1
|
Dalal R, Douglas MacGregor IJ. Nucleon-nucleon correlations inside atomic nuclei: synergies, observations and theoretical models. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:034301. [PMID: 38335543 DOI: 10.1088/1361-6633/ad27dd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
While the main features of atomic nuclei are well described by nuclear mean-field models, there is a large and growing body of evidence which indicates an important additional role played by spatially-correlated nucleon-nucleon structures. The role of nucleonic structures was first suggested by Heidmann in 1950 to explain the pick-up reactions of energetic nucleons. Since then, a steady flux of new experimental evidence has confirmed the presence of similar structures inside atomic nuclei, dominated by correlations between pairs of nucleons. The role of these internal nucleon-nucleon correlations has been established using various energetic probes like photons, pions, leptons and hadrons. These correlated structures are essential for understanding the interaction of particles with nuclei and their presence provides an explanation of many specific nuclear phenomena, including backscattered protons, copious deuteron production, sub-threshold particle production, neutrino interactions with nuclei and the European Muon Collaboration effect. On the theoretical side, these measurements have stimulated a large number of phenomenological models specifically devised to address these enigmatic observations. While reviews exist for specific interactions, there is currently no published commentary which systematically encompasses the wide range of experimental signatures and theoretical frameworks developed thus far. The present review draws together the synergies between a wide range of different experimental and theoretical studies, summarizes progress in this area and highlights outstanding issues for further study.
Collapse
Affiliation(s)
- Ranjeet Dalal
- Guru Jambheshwar University of Science and Technology, Hisar, India
| | - I J Douglas MacGregor
- SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
2
|
DeGrush A, Maschinot A, Akdogan T, Alarcon R, Bertozzi W, Booth E, Botto T, Calarco JR, Clasie B, Crawford C, Dow K, Farkhondeh M, Fatemi R, Filoti O, Franklin W, Gao H, Geis E, Gilad S, Hasell DK, Karpius P, Kohl M, Kolster H, Lee T, Matthews J, McIlhany K, Meitanis N, Milner R, Rapaport J, Redwine R, Seely J, Shinozaki A, Sindile A, Širca S, Six E, Smith T, Tonguc B, Tschalär C, Tsentalovich E, Turchinetz W, Xiao Y, Xu W, Zhou ZL, Ziskin V, Zwart T. Measurement of the Vector and Tensor Asymmetries at Large Missing Momentum in Quasielastic (e[over →],e^{'}p) Electron Scattering from Deuterium. PHYSICAL REVIEW LETTERS 2017; 119:182501. [PMID: 29219591 DOI: 10.1103/physrevlett.119.182501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 06/07/2023]
Abstract
We report the measurement of the beam-vector and tensor asymmetries A_{ed}^{V} and A_{d}^{T} in quasielastic (e[over →],e^{'}p) electrodisintegration of the deuteron at the MIT-Bates Linear Accelerator Center up to missing momentum of 500 MeV/c. Data were collected simultaneously over a momentum transfer range 0.1<Q^{2}<0.5 (GeV/c)^{2} with the Bates Large Acceptance Spectrometer Toroid using an internal deuterium gas target polarized sequentially in both vector and tensor states. The data are compared with calculations. The beam-vector asymmetry A_{ed}^{V} is found to be directly sensitive to the D-wave component of the deuteron and has a zero crossing at a missing momentum of about 320 MeV/c, as predicted. The tensor asymmetry A_{d}^{T} at large missing momentum is found to be dominated by the influence of the tensor force in the neutron-proton final-state interaction. The new data provide a strong constraint on theoretical models.
Collapse
Affiliation(s)
- A DeGrush
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A Maschinot
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T Akdogan
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R Alarcon
- Arizona State University, Tempe, Arizona 85287, USA
| | - W Bertozzi
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - E Booth
- Boston University, Boston, Massachusetts 02215, USA
| | - T Botto
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J R Calarco
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - B Clasie
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - C Crawford
- University of Kentucky, Lexington, Kentucky 40504, USA
| | - K Dow
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - M Farkhondeh
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R Fatemi
- University of Kentucky, Lexington, Kentucky 40504, USA
| | - O Filoti
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - W Franklin
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - H Gao
- Triangle Universities Nuclear Laboratory and Duke University, Durham, North Carolina 27708, USA
| | - E Geis
- Arizona State University, Tempe, Arizona 85287, USA
| | - S Gilad
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - D K Hasell
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - P Karpius
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - M Kohl
- Hampton University, Hampton, Virginia 23668, USA and Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - H Kolster
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T Lee
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - J Matthews
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - K McIlhany
- United States Naval Academy, Annapolis, Maryland 21402, USA
| | - N Meitanis
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R Milner
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J Rapaport
- Ohio University, Athens, Ohio 45701, USA
| | - R Redwine
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J Seely
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A Shinozaki
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A Sindile
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - S Širca
- Faculty of Mathematics and Physics, University of Ljubljana, and Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - E Six
- Arizona State University, Tempe, Arizona 85287, USA
| | - T Smith
- Dartmouth College, Hanover, New Hampshire 03755, USA
| | - B Tonguc
- Arizona State University, Tempe, Arizona 85287, USA
| | - C Tschalär
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - E Tsentalovich
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - W Turchinetz
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Y Xiao
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - W Xu
- Triangle Universities Nuclear Laboratory and Duke University, Durham, North Carolina 27708, USA
| | - Z-L Zhou
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - V Ziskin
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T Zwart
- Laboratory for Nuclear Science and Bates Linear Accelerator Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
3
|
|
4
|
Lovato A, Gandolfi S, Carlson J, Pieper SC, Schiavilla R. Neutral weak current two-body contributions in inclusive scattering from 12C. PHYSICAL REVIEW LETTERS 2014; 112:182502. [PMID: 24856692 DOI: 10.1103/physrevlett.112.182502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Indexed: 06/03/2023]
Abstract
An ab initio calculation of the sum rules of the neutral weak response functions in 12C is reported, based on a realistic Hamiltonian, including two- and three-nucleon potentials, and on realistic currents, consisting of one- and two-body terms. We find that the sum rules of the response functions associated with the longitudinal and transverse components of the (spacelike) neutral current are largest and that a significant portion (≃30%) of the calculated strength is due to two-body terms. This fact may have implications for the MiniBooNE and other neutrino quasielastic scattering data on nuclei.
Collapse
Affiliation(s)
- A Lovato
- Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA and Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - S Gandolfi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Carlson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Steven C Pieper
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - R Schiavilla
- Theory Center, Jefferson Lab, Newport News, Virginia 23606, USA and Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA
| |
Collapse
|
5
|
Holt RJ, Gilman R. Transition between nuclear and quark-gluon descriptions of hadrons and light nuclei. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:086301. [PMID: 22835935 DOI: 10.1088/0034-4885/75/8/086301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We provide a perspective on studies aimed at observing the transition between hadronic and quark-gluonic descriptions of reactions involving light nuclei. We begin by summarizing the results for relatively simple reactions such as the pion form factor and the neutral pion transition form factor as well as that for the nucleon and end with exclusive photoreactions in our simplest nuclei. A particular focus will be on reactions involving the deuteron. It is noted that a firm understanding of these issues is essential for unravelling important structure information from processes such as deeply virtual Compton scattering as well as deeply virtual meson production. The connection to exotic phenomena such as color transparency will be discussed. A number of outstanding challenges will require new experiments at modern facilities on the horizon as well as further theoretical developments.
Collapse
Affiliation(s)
- R J Holt
- Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| | | |
Collapse
|
6
|
Baghdasaryan H, Weinstein LB, Laget JM, Adhikari KP, Aghasyan M, Amarian M, Anghinolfi M, Avakian H, Ball J, Battaglieri M, Bedlinskiy I, Bennett RP, Berman BL, Biselli AS, Bookwalter C, Briscoe WJ, Brooks WK, Bültmann S, Burkert VD, Carman DS, Crede V, D'Angelo A, Daniel A, Dashyan N, De Vita R, De Sanctis E, Deur A, Dey B, Dickson R, Djalali C, Dodge GE, Doughty D, Dupre R, Egiyan H, El Alaoui A, El Fassi L, Eugenio P, Fegan S, Gabrielyan MY, Gilfoyle GP, Giovanetti KL, Gohn W, Gothe RW, Griffioen KA, Guidal M, Guo L, Gyurjyan V, Hakobyan H, Hanretty C, Hyde CE, Hicks K, Holtrop M, Ilieva Y, Ireland DG, Joo K, Keller D, Khandaker M, Khetarpal P, Kim A, Kim W, Klein A, Klein FJ, Konczykowski P, Kubarovsky V, Kuhn SE, Kuleshov SV, Kuznetsov V, Kvaltine ND, Livingston K, Lu HY, Macgregor IJD, Markov N, Mayer M, McAndrew J, McKinnon B, Meyer CA, Mikhailov K, Mokeev V, Moreno B, Moriya K, Morrison B, Moutarde H, Munevar E, Nadel-Turonski P, Nepali C, Niccolai S, Niculescu G, Niculescu I, Osipenko M, Ostrovidov AI, Paremuzyan R, Park K, Park S, Pasyuk E, Pereira SA, Pisano S, Pogorelko O, Pozdniakov S, Price JW, Procureur S, Protopopescu D, Ricco G, Ripani M, Rosner G, Rossi P, Sabatié F, Salgado C, Schumacher RA, Seraydaryan H, Smith GD, Sober DI, Sokhan D, Stepanyan SS, Stepanyan S, Stoler P, Strauch S, Taiuti M, Tang W, Taylor CE, Tedeschi DJ, Ungaro M, Vineyard MF, Voutier E, Watts DP, Weygand DP, Wood MH, Zhao B, Zhao ZW. Tensor correlations measured in 3He(e,e' pp)n. PHYSICAL REVIEW LETTERS 2010; 105:222501. [PMID: 21231381 DOI: 10.1103/physrevlett.105.222501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Indexed: 05/30/2023]
Abstract
We have measured the 3He(e,e' pp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs by using kinematic cuts and measured their relative and total momentum distributions. This is the first measurement of the ratio of pp to pn pairs as a function of pair total momentum p(tot). For pair relative momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low p(tot) and rises to approximately 0.5 at large p(tot). This shows the dominance of tensor over central correlations at this relative momentum.
Collapse
|
7
|
Egiyan KS, Asryan G, Gevorgyan N, Griffioen KA, Laget JM, Kuhn SE, Adams G, Amaryan MJ, Ambrozewicz P, Anghinolfi M, Audit G, Avakian H, Bagdasaryan H, Baillie N, Ball JP, Baltzell NA, Barrow S, Batourine V, Battaglieri M, Bedlinskiy I, Bektasoglu M, Bellis M, Benmouna N, Berman BL, Biselli AS, Blaszczyk L, Bouchigny S, Boiarinov S, Bradford R, Branford D, Briscoe WJ, Brooks WK, Bültmann S, Burkert VD, Butuceanu C, Calarco JR, Careccia SL, Carman DS, Cazes A, Chen S, Cole PL, Collins P, Coltharp P, Cords D, Corvisiero P, Crabb D, Crede V, Cummings JP, Dashyan N, De Masi R, De Vita R, De Sanctis E, Degtyarenko PV, Denizli H, Dennis L, Deur A, Dharmawardane KV, Dickson R, Djalali C, Dodge GE, Donnelly J, Doughty D, Dugger M, Dytman S, Dzyubak OP, Egiyan H, El Fassi L, Elouadrhiri L, Eugenio P, Fatemi R, Fedotov G, Feldman G, Feuerbach RJ, Fersch R, Garçon M, Gavalian G, Gilfoyle GP, Giovanetti KL, Girod FX, Goetz JT, Gonenc A, Gordon CIO, Gothe RW, Guidal M, Guillo M, Guler N, Guo L, Gyurjyan V, Hadjidakis C, Hafidi K, Hakobyan H, Hakobyan RS, Hanretty C, Hardie J, Hersman FW, Hicks K, Hleiqawi I, Holtrop M, Hyde-Wright CE, Ilieva Y, Ireland DG, Ishkhanov BS, Isupov EL, Ito MM, Jenkins D, Jo HS, Joo K, Juengst HG, Kalantarians N, Kellie JD, Khandaker M, Kim W, Klein A, Klein FJ, Klimenko AV, Kossov M, Krahn Z, Kramer LH, Kubarovsky V, Kuhn J, Kuleshov SV, Lachniet J, Langheinrich J, Lawrence D, Li J, Livingston K, Lu HY, Maccormick M, Marchand C, Markov N, Mattione P, McAleer S, McKinnon B, McNabb JWC, Mecking BA, Mehrabyan S, Melone JJ, Mestayer MD, Meyer CA, Mibe T, Mikhailov K, Minehart R, Mirazita M, Miskimen R, Mokeev V, Moriya K, Morrow SA, Moteabbed M, Mueller J, Munevar E, Mutchler GS, Nadel-Turonski P, Nasseripour R, Niccolai S, Niculescu G, Niculescu I, Niczyporuk BB, Niroula MR, Niyazov RA, Nozar M, O'Rielly GV, Osipenko M, Ostrovidov AI, Park K, Pasyuk E, Paterson C, Anefalos Pereira S, Pierce J, Pivnyuk N, Pocanic D, Pogorelko O, Pozdniakov S, Preedom BM, Price JW, Prok Y, Protopopescu D, Raue BA, Riccardi G, Ricco G, Ripani M, Ritchie BG, Ronchetti F, Rosner G, Rossi P, Sabatié F, Salamanca J, Salgado C, Santoro JP, Sapunenko V, Schumacher RA, Serov VS, Sharabian YG, Shvedunov NV, Skabelin AV, Smith ES, Smith LC, Sober DI, Sokhan D, Stavinsky A, Stepanyan SS, Stepanyan S, Stokes BE, Stoler P, Strauch S, Taiuti M, Tedeschi DJ, Thoma U, Tkabladze A, Tkachenko S, Todor L, Tur C, Ungaro M, Vineyard MF, Vlassov AV, Watts DP, Weinstein LB, Weygand DP, Williams M, Wolin E, Wood MH, Yegneswaran A, Zana L, Zhang J, Zhao B, Zhao ZW. Experimental study of exclusive 2H(e,e'p)n reaction mechanisms at high Q2. PHYSICAL REVIEW LETTERS 2007; 98:262502. [PMID: 17678084 DOI: 10.1103/physrevlett.98.262502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Indexed: 05/16/2023]
Abstract
The reaction 2H(e,e'p)n has been studied with full kinematic coverage for photon virtuality 1.75<Q2<5.5 GeV2. Comparisons of experimental data with theory indicate that for very low values of neutron recoil momentum (p(n)<100 MeV/c) the neutron is primarily a spectator and the reaction can be described by the plane-wave impulse approximation. For 100<p(n)<750 MeV/c, proton-neutron rescattering dominates the cross section, while Delta production followed by the NDelta-->NN transition is the primary contribution at higher momenta.
Collapse
Affiliation(s)
- K S Egiyan
- Yerevan Physics Institute, 375036 Yerevan, Armenia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schiavilla R, Wiringa RB, Pieper SC, Carlson J. Tensor forces and the ground-state structure of nuclei. PHYSICAL REVIEW LETTERS 2007; 98:132501. [PMID: 17501194 DOI: 10.1103/physrevlett.98.132501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Indexed: 05/15/2023]
Abstract
Two-nucleon momentum distributions are calculated for the ground states of nuclei with mass number A< or =8, using variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of np pairs is found to be much larger than that of pp pairs for values of the relative momentum in the range (300-600) MeV/c and vanishing total momentum. This order of magnitude difference is seen in all nuclei considered and has a universal character originating from the tensor components present in any realistic nucleon-nucleon potential. The correlations induced by the tensor force strongly influence the structure of np pairs, which are predominantly in deuteronlike states, while they are ineffective for pp pairs, which are mostly in 1S0 states. These features should be easily observable in two-nucleon knockout processes, such as A(e,e'np) and A(e,e'pp).
Collapse
Affiliation(s)
- R Schiavilla
- Jefferson Laboratory, Newport News, VA 23606, USA
| | | | | | | |
Collapse
|
9
|
Battye RA, Manton NS, Sutcliffe PM. Skyrmions and the α-particle model of nuclei. Proc Math Phys Eng Sci 2006. [DOI: 10.1098/rspa.2006.1767] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We compute new solutions of the Skyrme model with massive pions. Concentrating on baryon numbers which are multiples of four, we find low-energy Skyrmion solutions that are composed of charge four subunits, as in the α-particle model of nuclei. We summarize our current understanding of these solutions, and discuss their relationship to configurations in the α-particle model.
Collapse
Affiliation(s)
- Richard A Battye
- Jodrell Bank Observatory, School of Physics and Astronomy, University of ManchesterMacclesfield, Cheshire SK11 9DL, UK
- Schuster Laboratory, University of ManchesterBrunswick Street, Manchester M13 9PL, UK
| | - Nicholas S Manton
- Department of Applied Mathematics and Theoretical Physics, University of CambridgeWilberforce Road, Cambridge CB3 0WA, UK
| | - Paul M Sutcliffe
- Institute of Mathematics, University of KentCanterbury CT2 7NF, UK
| |
Collapse
|
10
|
Egiyan KS, Dashyan NB, Sargsian MM, Strikman MI, Weinstein LB, Adams G, Ambrozewicz P, Anghinolfi M, Asavapibhop B, Asryan G, Avakian H, Baghdasaryan H, Baillie N, Ball JP, Baltzell NA, Batourine V, Battaglieri M, Bedlinskiy I, Bektasoglu M, Bellis M, Benmouna N, Biselli AS, Bonner BE, Bouchigny S, Boiarinov S, Bradford R, Branford D, Brooks WK, Bültmann S, Burkert VD, Bultuceanu C, Calarco JR, Careccia SL, Carman DS, Carnahan B, Chen S, Cole PL, Coltharp P, Corvisiero P, Crabb D, Crannell H, Cummings JP, De Sanctis E, DeVita R, Degtyarenko PV, Denizli H, Dennis L, Dharmawardane KV, Djalali C, Dodge GE, Donnelly J, Doughty D, Dragovitsch P, Dugger M, Dytman S, Dzyubak OP, Egiyan H, Elouadrhiri L, Empl A, Eugenio P, Fatemi R, Fedotov G, Feuerbach RJ, Forest TA, Funsten H, Gavalian G, Gevorgyan NG, Gilfoyle GP, Giovanetti KL, Girod FX, Goetz JT, Golovatch E, Gothe RW, Griffioen KA, Guidal M, Guillo M, Guler N, Guo L, Gyurjyan V, Hadjidakis C, Hardie J, Hersman FW, Hicks K, Hleiqawi I, Holtrop M, Hu J, Huertas M, Hyde-Wright CE, Ilieva Y, Ireland DG, Ishkhanov BS, Ito MM, Jenkins D, Jo HS, Joo K, Juengst HG, Kellie JD, Khandaker M, Kim KY, Kim K, Kim W, Klein A, Klein FJ, Klimenko A, Klusman M, Kramer LH, Kubarovsky V, Kuhn J, Kuhn SE, Kuleshov S, Lachniet J, Laget JM, Langheinrich J, Lawrence D, Lee T, Livingston K, Maximon LC, McAleer S, McKinnon B, McNabb JWC, Mecking BA, Mestayer MD, Meyer CA, Mibe T, Mikhailov K, Minehart R, Mirazita M, Miskimen R, Mokeev V, Morrow SA, Mueller J, Mutchler GS, Nadel-Turonski P, Napolitano J, Nasseripour R, Niccolai S, Niculescu G, Niculescu I, Niczyporuk BB, Niyazov RA, O'Relly GV, Osipenko M, Ostrovidov AI, Park K, Pasyuk E, Peterson C, Pierce J, Pivnyuk N, Pocanic D, Pogorelko O, Polli E, Pozdniakov S, Preedom BM, Price JW, Prok Y, Protopopescu D, Qin LM, Raue BA, Riccardi G, Ricco G, Ripani M, Ritchie BG, Ronchetti F, Rosner G, Rossi P, Rowntree D, Rubin PD, Sabatié F, Salgado C, Santoro JP, Sapunenko V, Schumacher RA, Serov VS, Sharabian YG, Shaw J, Smith ES, Smith LC, Sober DI, Stavinsky A, Stepanyan S, Stokes BE, Stoler P, Strauch S, Suleiman R, Taiuti M, Taylor S, Tedeschi DJ, Thompson R, Tkabladze A, Tkachenko S, Todor L, Tur C, Ungaro M, Vineyard MF, Vlassov AV, Weygand DP, Williams M, Wolin E, Wood MH, Yegneswaran A, Yun J, Zana L, Zhang J. Measurement of two- and three-nucleon short-range correlation probabilities in nuclei. PHYSICAL REVIEW LETTERS 2006; 96:082501. [PMID: 16606174 DOI: 10.1103/physrevlett.96.082501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Indexed: 05/08/2023]
Abstract
The ratios of inclusive electron scattering cross sections of 4He, 12C, and 56Fe to 3He have been measured at 1 < xB <. At Q2 > 1.4 GeV2, the ratios exhibit two separate plateaus, at 1.5 < xB < 2 and at xB > 2.25. This pattern is predicted by models that include 2- and 3-nucleon short-range correlations (SRC). Relative to A = 3, the per-nucleon probabilities of 3-nucleon SRC are 2.3, 3.1, and 4.4 times larger for A = 4, 12, and 56. This is the first measurement of 3-nucleon SRC probabilities in nuclei.
Collapse
Affiliation(s)
- K S Egiyan
- Yerevan Physics Institute, Yerevan 375036, Armenia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rvachev MM, Benmokhtar F, Penel-Nottaris E, Aniol KA, Bertozzi W, Boeglin WU, Butaru F, Calarco JR, Chai Z, Chang CC, Chen JP, Chudakov E, Cisbani E, Cochran A, Cornejo J, Dieterich S, Djawotho P, Duran W, Epstein MB, Finn JM, Fissum KG, Frahi-Amroun A, Frullani S, Furget C, Garibaldi F, Gayou O, Gilad S, Gilman R, Glashausser C, Hansen JO, Higinbotham DW, Hotta A, Hu B, Iodice M, Iomni R, de Jager CW, Jiang X, Jones MK, Kelly JJ, Kox S, Kuss M, Laget JM, De Leo R, Lerose JJ, Liatard E, Lindgren R, Liyanage N, Lourie RW, Malov S, Margaziotis DJ, Markowitz P, Merchez F, Michaels R, Mitchell J, Mougey J, Perdrisat CF, Punjabi VA, Quéméner G, Ransome RD, Réal JS, Roché R, Sabatié F, Saha A, Simon D, Strauch S, Suleiman R, Tamae T, Templon JA, Tieulent R, Ueno H, Ulmer PE, Urciuoli GM, Voutier E, Wijesooriya K, Wojtsekhowski B. Quasielastic 3He(e,e'p)2H reaction at Q2 = 1.5 GeV2 for recoil momenta up to 1 GeV/c. PHYSICAL REVIEW LETTERS 2005; 94:192302. [PMID: 16090165 DOI: 10.1103/physrevlett.94.192302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Indexed: 05/03/2023]
Abstract
We have studied the quasielastic 3He(e,e(')p)2H reaction in perpendicular coplanar kinematics, with the energy and the momentum transferred by the electron fixed at 840 MeV and 1502 MeV/c, respectively. The 3He(e,e(')p)2H cross section was measured for missing momenta up to 1000 MeV/c, while the A(TL) asymmetry was extracted for missing momenta up to 660 MeV/c. For missing momenta up to 150 MeV/c, the cross section is described by variational calculations using modern 3He wave functions. For missing momenta from 150 to 750 MeV/c, strong final-state interaction effects are observed. Near 1000 MeV/c, the experimental cross section is more than an order of magnitude larger than predicted by available theories. The A(TL) asymmetry displays characteristic features of broken factorization with a structure that is similar to that generated by available models.
Collapse
Affiliation(s)
- M M Rvachev
- Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Niyazov RA, Weinstein LB, Adams G, Ambrozewicz P, Anciant E, Anghinolfi M, Asavapibhop B, Asryan G, Audit G, Auger T, Avakian H, Bagdasaryan H, Ball JP, Barrow S, Battaglieri M, Beard K, Bektasoglu M, Bellis M, Benmouna N, Berman BL, Bertozzi W, Bianchi N, Biselli AS, Boiarinov S, Bonner BE, Bouchigny S, Bradford R, Branford D, Brooks WK, Burkert VD, Butuceanu C, Calarco JR, Carman DS, Carnahan B, Cetina C, Chen S, Ciciani L, Cole PL, Coleman A, Cords D, Corvisiero P, Crabb D, Crannell H, Cummings JP, De Sanctis E, Dashyan N, DeVita R, Degtyarenko PV, Denizli H, Dennis L, Dharmawardane KV, Dhuga KS, Djalali C, Dodge GE, Doughty D, Dragovitsch P, Dugger M, Dytman S, Dzyubak OP, Eckhause M, Egiyan H, Egiyan KS, Elouadrhiri L, Empl A, Eugenio P, Fatemi R, Feuerbach RJ, Ficenec J, Forest TA, Funsten H, Gavalian G, Gilad S, Gilfoyle GP, Giovanetti KL, Girard P, Gordon CIO, Gothe RW, Griffioen K, Guidal M, Guillo M, Guo L, Gyurjyan V, Hadjidakis C, Hakobyan RS, Hardie J, Heddle D, Hersman FW, Hicks K, Holtrop M, Hu J, Hyde-Wright CE, Ilieva Y, Ingram W, Ito MM, Jenkins D, Joo K, Juengst HG, Kelley JH, Kellie J, Khandaker M, Kim DH, Kim KY, Kim K, Kim MS, Kim W, Klein A, Klein FJ, Klimenko AV, Klusman M, Kossov M, Kramer LH, Kuang Y, Kuhn SE, Kuhn J, Lachniet J, Laget JM, Langheinrich J, Lawrence D, Li J, Livingston K, Lukashin K, Manak JJ, Marchand C, McAleer S, McLauchlan S, McNabb JWC, Mecking BA, Mehrabyan S, Melone JJ, Mestayer MD, Meyer CA, Mikhailov K, Mirazita M, Miskimen R, Morand L, Morrow SA, Muccifora V, Mueller J, Mutchler GS, Napolitano J, Nasseripour R, Nelson SO, Niccolai S, Niculescu G, Niculescu I, Niczyporuk BB, Nozar M, O'Rielly GV, Osipenko M, Park K, Pasyuk E, Peterson G, Philips SA, Pivnyuk N, Pocanic D, Pogorelko O, Polli E, Pozdniakov S, Preedom BM, Price JW, Prok Y, Protopopescu D, Qin LM, Raue BA, Riccardi G, Ricco G, Ripani M, Ritchie BG, Ronchetti F, Rossi P, Rowntree D, Rubin PD, Sabatié F, Sabourov K, Salgado C, Santoro JP, Sapunenko V, Schumacher RA, Serov VS, Shafi A, Sharabian YG, Shaw J, Simionatto S, Skabelin AV, Smith ES, Smith LC, Sober DI, Spraker M, Stavinsky A, Stepanyan S, Stoler P, Strakovsky II, Strauch S, Taiuti M, Taylor S, Tedeschi DJ, Thoma U, Thompson R, Todor L, Tur C, Ungaro M, Vineyard MF, Vlassov AV, Wang K, Weller H, Weygand DP, Whisnant CS, Wolin E, Wood MH, Yegneswaran A, Yun J, Zhang B. Two-nucleon momentum distributions measured in 3He(e,e'pp)n. PHYSICAL REVIEW LETTERS 2004; 92:052303. [PMID: 14995301 DOI: 10.1103/physrevlett.92.052303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Indexed: 05/24/2023]
Abstract
We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic range. The kinetic energy distribution for "fast" nucleons (p>250 MeV/c) peaks where two nucleons each have 20% or less, and the third nucleon has most of the transferred energy. These fast pp and pn pairs are back to back with little momentum along the three-momentum transfer, indicating that they are spectators. Calculations by Sargsian and by Laget also indicate that we have measured distorted two-nucleon momentum distributions by striking one nucleon and detecting the spectator correlated pair.
Collapse
Affiliation(s)
- R A Niyazov
- Old Dominion University, Norfolk, Virginia 23529, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wiringa RB, Pieper SC. Evolution of nuclear spectra with nuclear forces. PHYSICAL REVIEW LETTERS 2002; 89:182501. [PMID: 12398591 DOI: 10.1103/physrevlett.89.182501] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Indexed: 05/24/2023]
Abstract
We first define a series of NN interaction models ranging from very simple to fully realistic. We then present Green's function Monte Carlo calculations of light nuclei to show how nuclear spectra evolve as the nuclear forces are made increasingly sophisticated. We find that the absence of stable five- and eight-body nuclei depends crucially on the spin, isospin, and tensor components of the nuclear force.
Collapse
Affiliation(s)
- R B Wiringa
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | | |
Collapse
|
14
|
Passchier I, van Buuren LD, Szczerba D, Alarcon R, Bauer TS, Boersma DJ, van Den Brand JFJ, Bulten HJ, Ent R, Ferro-Luzzi M, Harvey M, Heimberg P, Higinbotham DW, Klous S, Kolster H, Lang J, Militsyn BL, Nikolenko D, Nooren GJL, Norum BE, Poolman HR, Rachek I, Simani MC, Six E, de Vries H, Wang K, Zhou ZL. Spin-momentum correlations in quasielastic electron scattering from deuterium. PHYSICAL REVIEW LETTERS 2002; 88:102302. [PMID: 11909349 DOI: 10.1103/physrevlett.88.102302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Indexed: 05/23/2023]
Abstract
The spin-momentum correlation parameter A(V)(ed) was measured for the 2H-->(e-->,e'p)n reaction for missing momenta up to 350 MeV/c at Q2 = 0.21 (GeV/c)(2) for quasielastic scattering of polarized electrons from vector-polarized deuterium. The data give detailed information about the deuteron spin structure and are in good agreement with the results of microscopic calculations based on realistic nucleon-nucleon potentials and including various spin-dependent reaction mechanism effects. The experiment reveals in a most direct manner the effects of the D state in the deuteron ground-state wave function and shows the importance of isobar configurations for this reaction.
Collapse
Affiliation(s)
- I Passchier
- National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhou ZL, Chen J, Soong SB, Young A, Jiang X, Alarcon R, Arenhövel H, Bernstein A, Bertozzi W, Comfort J, Dodson G, Dolfini S, Dooley A, Dow K, Farkhondeh M, Gilad S, Hicks R, Hotta A, Joo K, Kaloskamis NI, Karabarbounis A, Kowalski S, Kunz C, Margaziotis DJ, Mertz C, Miller M, Miskimen R, Miura T, Miyase H, Papanicolas CN, Peterson G, Ramirez A, Rowntree D, Sarty AJ, Shaw J, Suda T, Tamae T, Tieger D, Tjon JA, Tschalaer C, Tsentalovich E, Turchinetz W, Vellidis CE, Warren GA, Weinstein LB, Williamson S, Zhao J, Zwart T. Relativistic effects and two-body currents in (H)((-->)e(')p)n using out-of-plane detection. PHYSICAL REVIEW LETTERS 2001; 87:172301. [PMID: 11690266 DOI: 10.1103/physrevlett.87.172301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2001] [Indexed: 05/23/2023]
Abstract
Measurements of the (2)H((-->)e,e(')p)n reaction were performed with the out-of-plane magnetic spectrometers (OOPS) at the MIT-Bates Linear Accelerator. The longitudinal-transverse, f(LT) and f(')(LT), and the transverse-transverse, f(TT), interference responses at a missing momentum of 210 MeV/c were simultaneously extracted in the dip region at Q2 = 0.15 (GeV/c)(2). In comparison to models of deuteron electrodisintegration, the data clearly reveal strong effects of relativity and final-state interactions and the importance of two-body meson-exchange currents and isobar configurations. We demonstrate that such effects can be disentangled by extracting these responses using the novel out-of-plane technique.
Collapse
Affiliation(s)
- Z L Zhou
- Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Garçon M, Van Orden JW. The Deuteron: Structure and Form Factors. ADVANCES IN THE PHYSICS OF PARTICLES AND NUCLEI 2001. [DOI: 10.1007/0-306-47915-x_4] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|