1
|
Abstract
We present a review of the Penrose process and its modifications in relation to the Kerr black holes and naked singularities (superspinars). We introduce the standard variant of this process, its magnetic version connected with magnetized Kerr black holes or naked singularities, the electric variant related to electrically charged Schwarzschild black holes, and the radiative Penrose process connected with charged particles radiating in the ergosphere of magnetized Kerr black holes or naked singularities. We discuss the astrophysical implications of the variants of the Penrose process, concentrating attention to the extreme regime of the magnetic Penrose process leading to extremely large acceleration of charged particles up to ultra-high energy E∼1022 eV around magnetized supermassive black holes with mass M∼1010M⊙ and magnetic intensity B∼104 G. Similarly high energies can be obtained by the electric Penrose process. The extraordinary case is represented by the radiative Penrose process that can occur only around magnetized Kerr spacetimes but just inside their ergosphere, in contrast to the magnetic Penrose process that can occur in a more extended effective ergosphere determined by the intensity of the electromagnetic interaction. The explanation is simple, as the radiative Penrose process is closely related to radiated photons with negative energy whose existence is limited just to the ergosphere.
Collapse
|
2
|
Gupta K, Law YA, Levin J. Penrose process for a charged black hole in a uniform magnetic field. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.104.084059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Influence of Cosmic Repulsion and Magnetic Fields on Accretion Disks Rotating around Kerr Black Holes. UNIVERSE 2020. [DOI: 10.3390/universe6020026] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present a review of the influence of cosmic repulsion and external magnetic fields on accretion disks rotating around rotating black holes and on jets associated with these rotating configurations. We consider both geometrically thin and thick disks. We show that the vacuum energy represented by the relic cosmological constant strongly limits extension of the accretion disks that is for supermassive black holes comparable to extension of largest galaxies, and supports collimation of jets at large distances from the black hole. We further demonstrate that an external magnetic field crucially influences the fate of ionized Keplerian disks causing creation of winds and jets, enabling simultaneously acceleration of ultra-high energy particles with energy up to 10 21 eV around supermassive black holes with M ∼ 10 10 M ⊙ surrounded by sufficiently strong magnetic field with B ∼ 10 4 G. We also show that the external magnetic fields enable existence of “levitating” off-equatorial clouds or tori, along with the standard equatorial toroidal structures, if these carry a non-vanishing, appropriately distributed electric charge.
Collapse
|
4
|
Fifty Years of Energy Extraction from Rotating Black Hole: Revisiting Magnetic Penrose Process. UNIVERSE 2019. [DOI: 10.3390/universe5050125] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnetic Penrose process (MPP) is not only the most exciting and fascinating process mining the rotational energy of black hole but it is also the favored astrophysically viable mechanism for high energy sources and phenomena. It operates in three regimes of efficiency, namely low, moderate and ultra, depending on the magnetization and charging of spinning black holes in astrophysical setting. In this paper, we revisit MPP with a comprehensive discussion of its physics in different regimes, and compare its operation with other competing mechanisms. We show that MPP could in principle foot the bill for powering engine of such phenomena as ultra-high-energy cosmic rays, relativistic jets, fast radio bursts, quasars, AGNs, etc. Further, it also leads to a number of important observable predictions. All this beautifully bears out the promise of a new vista of energy powerhouse heralded by Roger Penrose half a century ago through this process, and it has today risen in its magnetically empowered version of mid 1980s from a purely thought experiment of academic interest to a realistic powering mechanism for various high-energy astrophysical phenomena.
Collapse
|
5
|
Tursunov A, Stuchlík Z, Kološ M. Circular orbits and related quasiharmonic oscillatory motion of charged particles around weakly magnetized rotating black holes. Int J Clin Exp Med 2016. [DOI: 10.1103/physrevd.93.084012] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|