1
|
|
2
|
Chatziioannou K. Uncertainty limits on neutron star radius measurements with gravitational waves. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.105.084021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Toward Calibration of the Global Network of Gravitational Wave Detectors with Sub-Percent Absolute and Relative Accuracy. GALAXIES 2022. [DOI: 10.3390/galaxies10020042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The detection of gravitational-wave signals by the LIGO and Virgo observatories during the past few years has ushered us into the era of gravitational-wave astronomy, shifting our focus from detection to source parameter estimation. This has imposed stringent requirements on calibration in order to maximize the astrophysical information extracted from these detected signals. Current detectors rely on photon radiation pressure from auxiliary lasers to achieve required calibration accuracy. These photon calibrators have made significant improvements over the last few years, realizing fiducials displacements with sub-percent accuracy. This achieved accuracy is directly dependent on the laser power calibration. For the next observing campaign, scheduled to begin at the end of 2022, a new scheme is being implemented to achieve improved laser power calibration accuracy for all of the GW detectors in the global network. It is expected to significantly improve absolute and relative calibration accuracy for the entire network.
Collapse
|
4
|
Vitale S, Haster CJ, Sun L, Farr B, Goetz E, Kissel J, Cahillane C. Physical approach to the marginalization of LIGO calibration uncertainties. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.103.063016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Abstract
Gravitational waves astronomy allows us to study objects and events invisible in electromagnetic waves. It is crucial to validate the theories and models of the most mysterious and extreme matter in the Universe: the neutron stars. In addition to inspirals and mergers of neutrons stars, there are currently a few proposed mechanisms that can trigger radiation of long-lasting gravitational radiation from neutron stars, such as e.g., elastically and/or magnetically driven deformations: mountains on the stellar surface supported by the elastic strain or magnetic field, free precession, or unstable oscillation modes (e.g., the r-modes). The astrophysical motivation for continuous gravitational waves searches, current LIGO and Virgo strategies of data analysis and prospects are reviewed in this work.
Collapse
|