1
|
Bunzarova NZ, Pesheva NC, Povolotsky AM. Phase diagram of generalized totally asymmetric simple exclusion process on an open chain: Liggett-like boundary conditions. Phys Rev E 2024; 109:044132. [PMID: 38755858 DOI: 10.1103/physreve.109.044132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/01/2024] [Indexed: 05/18/2024]
Abstract
The totally asymmetric simple exclusion process with generalized update is a version of the discrete time totally asymmetric exclusion process with an additional interparticle interaction that controls the degree of particle clustering. Though the model was shown to be integrable on the ring and on the infinite lattice, on the open chain it was studied mainly numerically, while no analytic results existed even for its phase diagram. In this paper, we introduce boundary conditions associated with the infinite translation invariant stationary states of the model, which allow us to obtain the exact phase diagram analytically. We discuss the phase diagram in detail and confirm the analytic predictions by extensive numerical simulations.
Collapse
Affiliation(s)
| | - Nina C Pesheva
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alexander M Povolotsky
- Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia and National Research University Higher School of Economics, 20 Myasnitskaya, 101000 Moscow, Russia
| |
Collapse
|
2
|
Maan R, Reese L, Volkov VA, King MR, van der Sluis EO, Andrea N, Evers WH, Jakobi AJ, Dogterom M. Multivalent interactions facilitate motor-dependent protein accumulation at growing microtubule plus-ends. Nat Cell Biol 2023; 25:68-78. [PMID: 36536175 PMCID: PMC9859754 DOI: 10.1038/s41556-022-01037-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
Growing microtubule ends organize end-tracking proteins into comets of mixed composition. Here using a reconstituted fission yeast system consisting of end-binding protein Mal3, kinesin Tea2 and cargo Tip1, we found that these proteins can be driven into liquid-phase droplets both in solution and at microtubule ends under crowding conditions. In the absence of crowding agents, cryo-electron tomography revealed that motor-dependent comets consist of disordered networks where multivalent interactions may facilitate non-stoichiometric accumulation of cargo Tip1. We found that two disordered protein regions in Mal3 are required for the formation of droplets and motor-dependent accumulation of Tip1, while autonomous Mal3 comet formation requires only one of them. Using theoretical modelling, we explore possible mechanisms by which motor activity and multivalent interactions may lead to the observed enrichment of Tip1 at microtubule ends. We conclude that microtubule ends may act as platforms where multivalent interactions condense microtubule-associated proteins into large multi-protein complexes.
Collapse
Affiliation(s)
- Renu Maan
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Louis Reese
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
- Physiology Course 2017, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Vladimir A Volkov
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
- Physiology Course 2017, Marine Biological Laboratory, Woods Hole, MA, USA
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Matthew R King
- Physiology Course 2017, Marine Biological Laboratory, Woods Hole, MA, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
| | - Eli O van der Sluis
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Nemo Andrea
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Wiel H Evers
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
- Physiology Course 2017, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|