1
|
Hathcock D, Dillavou S, Hanlan JM, Durian DJ, Tu Y. Stochastic dynamics of granular hopper flows: A configurational mode controls the stability of clogs. Phys Rev E 2025; 111:L023404. [PMID: 40103127 DOI: 10.1103/physreve.111.l023404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Granular flows in small-outlet hoppers exhibit several characteristic but poorly understood behaviors: temporary clogs (pauses) where flow stops before later spontaneously restarting, permanent clogs that last indefinitely, and non-Gaussian, nonmonotonic flow-rate statistics. These aspects have been studied independently, but a model of hopper flow that explains all three has not been formulated. Here, we introduce a phenomenological model that provides a unifying dynamical mechanism for all three behaviors: coupling between the flow rate and a hidden mode that controls the stability of clogs. In the theory, flow rate evolves according to Langevin dynamics with multiplicative noise and an absorbing state at zero flow, conditional on the hidden mode. The model fully reproduces the statistics of pause and clog events of a large (>40000 flows) experimental dataset, including nonexponentially distributed clogging times and non-Gaussian flow rate distribution, and explains the stretched-exponential growth of the average clogging time with outlet size. Further, we identify the physical nature of the hidden mode in microscopic configurational features, including size and smoothness of the static arch structure formed during pauses and clogs. Our work provides a unifying framework for several poorly understood clogging phenomena, and suggests numerous new paths toward further understanding of this complex system.
Collapse
Affiliation(s)
- David Hathcock
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Sam Dillavou
- University of Pennsylvania, Department of Physics & Astronomy, Philadelphia, Pennsylvania 19104, USA
| | - Jesse M Hanlan
- University of Pennsylvania, Department of Physics & Astronomy, Philadelphia, Pennsylvania 19104, USA
| | - Douglas J Durian
- University of Pennsylvania, Department of Physics & Astronomy, Philadelphia, Pennsylvania 19104, USA
| | - Yuhai Tu
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| |
Collapse
|
2
|
Liang Y, Wang W, Metzler R, Cherstvy AG. Anomalous diffusion, nonergodicity, non-Gaussianity, and aging of fractional Brownian motion with nonlinear clocks. Phys Rev E 2023; 108:034113. [PMID: 37849140 DOI: 10.1103/physreve.108.034113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/07/2023] [Indexed: 10/19/2023]
Abstract
How do nonlinear clocks in time and/or space affect the fundamental properties of a stochastic process? Specifically, how precisely may ergodic processes such as fractional Brownian motion (FBM) acquire predictable nonergodic and aging features being subjected to such conditions? We address these questions in the current study. To describe different types of non-Brownian motion of particles-including power-law anomalous, ultraslow or logarithmic, as well as superfast or exponential diffusion-we here develop and analyze a generalized stochastic process of scaled-fractional Brownian motion (SFBM). The time- and space-SFBM processes are, respectively, constructed based on FBM running with nonlinear time and space clocks. The fundamental statistical characteristics such as non-Gaussianity of particle displacements, nonergodicity, as well as aging are quantified for time- and space-SFBM by selecting different clocks. The latter parametrize power-law anomalous, ultraslow, and superfast diffusion. The results of our computer simulations are fully consistent with the analytical predictions for several functional forms of clocks. We thoroughly examine the behaviors of the probability-density function, the mean-squared displacement, the time-averaged mean-squared displacement, as well as the aging factor. Our results are applicable for rationalizing the impact of nonlinear time and space properties superimposed onto the FBM-type dynamics. SFBM offers a general framework for a universal and more precise model-based description of anomalous, nonergodic, non-Gaussian, and aging diffusion in single-molecule-tracking observations.
Collapse
Affiliation(s)
- Yingjie Liang
- College of Mechanics and Materials, Hohai University, 211100 Nanjing, China
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Wei Wang
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Andrey G Cherstvy
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Pongó T, Börzsönyi T, Cruz Hidalgo R. Discharge of elongated grains in silos under rotational shear. Phys Rev E 2022; 106:034904. [PMID: 36266860 DOI: 10.1103/physreve.106.034904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
The discharge of elongated particles from a silo with rotating bottom is investigated numerically. The introduction of a slight transverse shear reduces the flow rate Q by up to 70% compared with stationary bottom, but the flow rate shows a modest increase by further increasing the external shear. Focusing on the dependency of flow rate Q on orifice diameter D, the spheres and rods show two distinct trends. For rods, in the small-aperture limit Q seems to follow an exponential trend, deviating from the classical power-law dependence. These macroscopic observations are in good agreement with our earlier experimental findings [Phys. Rev. E 103, 062905 (2021)2470-004510.1103/PhysRevE.103.062905]. With the help of the coarse-graining methodology we obtain the spatial distribution of the macroscopic density, velocity, kinetic pressure, and orientation fields. This allows us detecting a transition from funnel to mass flow pattern caused by the external shear. Additionally, averaging these fields in the region of the orifice reveals that the strong initial decrease in Q is mostly attributed to changes in the flow velocity, while the weakly increasing trend at higher rotation rates is related to increasing packing fraction. Similar analysis of the grain orientation at the orifice suggests a correlation of the flow rate magnitude with the vertical orientation and the packing fraction at the orifice with the order of the grains. Lastly, the vertical profile of mean acceleration at the center of the silo denotes that the region where the acceleration is not negligible shrinks significantly due to the strong perturbation induced by the moving wall.
Collapse
Affiliation(s)
- Tivadar Pongó
- Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31008 Pamplona, Spain
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Tamás Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Raúl Cruz Hidalgo
- Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
4
|
Plohl G, Jannet M, Planchette C. Unjamming strongly compressed rafts: Effects of the compression direction. Phys Rev E 2022; 106:034903. [PMID: 36266893 DOI: 10.1103/physreve.106.034903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
We experimentally study the unjamming dynamics of strongly compressed particle rafts confined between two fixed walls and two movable barriers. The back barrier is made of an elastic band, whose deflection indicates the local stress. The front barrier is pierced by a gate, whose opening triggers local unjamming. Prior to gate opening, the rafts are quasistatically compressed by moving only one of the two barriers, in the vicinity of which folds form. Using high-speed imaging, we follow the raft relaxation with folded, jammed, and unjammed areas and measure the velocity fields inside and outside the confined domain. Two very different behaviors develop. For rafts compressed by the back barrier, only partial unjamming occurs. At the end of the process, many folds remain and the back stress does not relax. The flow develops mostly along the compression axis and the particles passing the gate form a dense raft whose width is the gate width. For rafts compressed at the front, quasitotal unjamming is observed. Almost no folds persist and only minimal stress remains, if any. The particles flow along the compression axis but also normally to it and form a rather circular and not dense assembly. Both the force chain network orientation and the initial fold location could cause the unjamming difference. Other effects, such as a different pressure field or simple steric hindrance, cannot be excluded.
Collapse
Affiliation(s)
- Gregor Plohl
- Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, Graz 8010, Austria
| | - Mathieu Jannet
- Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, Graz 8010, Austria
| | - Carole Planchette
- Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, Graz 8010, Austria
| |
Collapse
|
5
|
Knippenberg T, Lüders A, Lozano C, Nielaba P, Bechinger C. Role of cohesion in the flow of active particles through bottlenecks. Sci Rep 2022; 12:11525. [PMID: 35798779 PMCID: PMC9262925 DOI: 10.1038/s41598-022-15577-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
We experimentally and numerically study the flow of programmable active particles (APs) with tunable cohesion strength through geometric constrictions. Similar to purely repulsive granular systems, we observe an exponential distribution of burst sizes and power-law-distributed clogging durations. Upon increasing cohesion between APs, we find a rather abrupt transition from an arch-dominated clogging regime to a cohesion-dominated regime where droplets form at the aperture of the bottleneck. In the arch-dominated regime the flow-rate only weakly depends on the cohesion strength. This suggests that cohesion must not necessarily decrease the group's efficiency passing through geometric constrictions or pores. Such behavior is explained by "slippery" particle bonds which avoids the formation of a rigid particle network and thus prevents clogging. Overall, our results confirm the general applicability of the statistical framework of intermittent flow through bottlenecks developed for granular materials also in case of active microswimmers whose behavior is more complex than that of Brownian particles but which mimic the behavior of living systems.
Collapse
Affiliation(s)
- Timo Knippenberg
- Fachbereich Physik, Universität Konstanz, 78457, Constance, Germany
| | - Anton Lüders
- Fachbereich Physik, Universität Konstanz, 78457, Constance, Germany
| | | | - Peter Nielaba
- Fachbereich Physik, Universität Konstanz, 78457, Constance, Germany
| | - Clemens Bechinger
- Fachbereich Physik, Universität Konstanz, 78457, Constance, Germany.
| |
Collapse
|
6
|
A study of ellipsoidal and spherical particle flow, clogging and unclogging dynamics. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Caitano R, Guerrero BV, González RER, Zuriguel I, Garcimartín A. Characterization of the Clogging Transition in Vibrated Granular Media. PHYSICAL REVIEW LETTERS 2021; 127:148002. [PMID: 34652198 DOI: 10.1103/physrevlett.127.148002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The existence of a transition from a clogged to an unclogged state has been recently proposed for the flow of macroscopic particles through bottlenecks in systems as diverse as colloidal suspensions, granular matter, or live beings. Here, we experimentally demonstrate that, for vibrated granular media, such a transition genuinely exists, and we characterize it as a function of the outlet size and vibration intensity. We confirm the suitability of the "flowing parameter" as the order parameter, and we find out that the rescaled maximum acceleration of the system should be replaced as the control parameter by a dimensionless velocity that can be seen as the square root of the ratio between kinetic and potential energy. In all the investigated scenarios, we observe that, for a critical value of this control parameter S_{c}, there seems to be a continuous transition to an unclogged state. The data can be rescaled with this critical value, which, as expected, decreases with the orifice size D. This leads to a phase diagram in the S-D plane in which clogging appears as a concave surface.
Collapse
Affiliation(s)
- R Caitano
- Depto. de Física y Mat. Apl., Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - B V Guerrero
- Depto. de Física y Mat. Apl., Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - R E R González
- Laboratório de Sistemas Complexos e Universais, Departamento de Física, Universidade Federal Rural de Pernambuco, Recife-PE, CEP 52171-900, Brasil
| | - I Zuriguel
- Depto. de Física y Mat. Apl., Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - A Garcimartín
- Depto. de Física y Mat. Apl., Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| |
Collapse
|
8
|
Garcimartín A, Guerrero BV, Nicolas A, Barbosa da Silva RC, Zuriguel I. On the broad tails in breaking time distributions of vibrated clogging arches. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124903009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Flowing grains can clog an orifice by developing arches, an undesirable event in many cases. Several strategies have been put forward to avoid this. One of them is to vibrate the system in order to undo the clogging. Nevertheless, the time taken to break an arch under a constant vibration has a distribution displaying a heavy tail. This can lead to a situation where the average breaking time is not well defined. Moreover, it has been observed in some experiments that these tails tend to flatten for very long times, exacerbating the problem. Here we will review two conceptual frameworks that have been proposed to understand the phenomenon and discuss their physical implications.
Collapse
|
9
|
Hernández-Delfin D, Pongó T, To K, Börzsönyi T, Hidalgo RC. Particle flow rate in silos under rotational shear. Phys Rev E 2020; 102:042902. [PMID: 33212719 DOI: 10.1103/physreve.102.042902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Very recently, To et al. have experimentally explored granular flow in a cylindrical silo, with a bottom wall that rotates horizontally with respect to the lateral wall [Phys. Rev. E 100, 012906 (2019)10.1103/PhysRevE.100.012906]. Here we numerically reproduce their experimental findings, in particular, the peculiar behavior of the mass flow rate Q as a function of the frequency of rotation f. Namely, we find that for small outlet diameters D the flow rate increased with f, while for larger D a nonmonotonic behavior is confirmed. Furthermore, using a coarse-graining technique, we compute the macroscopic density, momentum, and the stress tensor fields. These results show conclusively that changes in the discharge process are directly related to changes in the flow pattern from funnel flow to mass flow. Moreover, by decomposing the mass flux (linear momentum field) at the orifice into two main factors, macroscopic velocity and density fields, we obtain that the nonmonotonic behavior of the linear momentum is caused by density changes rather than by changes in the macroscopic velocity. In addition, by analyzing the spatial distribution of the kinetic stress, we find that for small orifices increasing rotational shear enhances the mean kinetic pressure 〈p^{k}〉 and the system dilatancy. This reduces the stability of the arches, and, consequently, the volumetric flow rate increases monotonically. For large orifices, however, we detected that 〈p^{k}〉 changes nonmonotonically, which might explain the nonmonotonic behavior of Q when varying the rotational shear.
Collapse
Affiliation(s)
- D Hernández-Delfin
- Departamento de Física y Matemática Aplicada, Universidad de Navarra, P.O. Box 31080, Navarra, Spain
| | - T Pongó
- Departamento de Física y Matemática Aplicada, Universidad de Navarra, P.O. Box 31080, Navarra, Spain
| | - K To
- Institute of Physics, Academia Sinica, P.O. Box 11529, Taipei, Taiwan R.O.C
| | - T Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - R C Hidalgo
- Departamento de Física y Matemática Aplicada, Universidad de Navarra, P.O. Box 31080, Navarra, Spain
| |
Collapse
|
10
|
Harth K, Wang J, Börzsönyi T, Stannarius R. Intermittent flow and transient congestions of soft spheres passing narrow orifices. SOFT MATTER 2020; 16:8013-8023. [PMID: 32785350 DOI: 10.1039/d0sm00938e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Soft, low-friction particles in silos show peculiar features during their discharge. The outflow velocity and the clogging probability both depend upon the momentary silo fill height, in sharp contrast to silos filled with hard particles. The reason is the fill-height dependence of the pressure at the orifice. We study the statistics of silo discharge of soft hydrogel spheres. The outflow is found to become increasingly fluctuating and even intermittent with decreasing orifice size, and with decreasing fill height. In orifices narrower than two particle diameters, outflow can stop completely, but in contrast to clogs formed by rigid particles, these congestions may dissolve spontaneously. We analyze such non-permanent congestions and attribute them to slow reorganization processes in the container, caused by viscoelasticity of the material.
Collapse
Affiliation(s)
- Kirsten Harth
- Institute of Physics, Otto von Guericke University, Department of Nonlinear Phenomena, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | | | | | | |
Collapse
|