1
|
Sun T, Zhao Q, Wan F, Salamin YI, Li JX. Generation of Ultrabrilliant Polarized Attosecond Electron Bunches via Dual-Wake Injection. PHYSICAL REVIEW LETTERS 2024; 132:045001. [PMID: 38335335 DOI: 10.1103/physrevlett.132.045001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/20/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
Laser wakefield acceleration is paving the way for the next generation of electron accelerators, for their own sake and as radiation sources. A controllable dual-wake injection scheme is put forward here to generate an ultrashort triplet electron bunch with high brightness and high polarization, employing a radially polarized laser as a driver. We find that the dual wakes can be driven by both transverse and longitudinal components of the laser field in the quasiblowout regime, sustaining the laser-modulated wakefield which facilitates the subcycle and transversely split injection of the triplet bunch. Polarization of the triplet bunch can be highly preserved due to the laser-assisted collective spin precession and the noncanceled transverse spins. In our three-dimensional particle-in-cell simulations, the triplet electron bunch, with duration about 500 as, six-dimensional brightness exceeding 10^{14} A/m^{2}/0.1% and polarization over 80%, can be generated using a few-terawatt laser. Such an electron bunch could play an essential role in many applications, such as ultrafast imaging, nuclear structure and high-energy physics studies, and the operation of coherent radiation sources.
Collapse
Affiliation(s)
- Ting Sun
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Zhao
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Feng Wan
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yousef I Salamin
- Department of Physics, American University of Sharjah, Sharjah, POB 26666 Sharjah, United Arab Emirates
| | - Jian-Xing Li
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Nuclear Physics, China Institute of Atomic Energy, P.O. Box 275(7), Beijing 102413, China
| |
Collapse
|
2
|
Nie Z, Li F, Morales F, Patchkovskii S, Smirnova O, An W, Nambu N, Matteo D, Marsh KA, Tsung F, Mori WB, Joshi C. In Situ Generation of High-Energy Spin-Polarized Electrons in a Beam-Driven Plasma Wakefield Accelerator. PHYSICAL REVIEW LETTERS 2021; 126:054801. [PMID: 33605740 DOI: 10.1103/physrevlett.126.054801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
In situ generation of a high-energy, high-current, spin-polarized electron beam is an outstanding scientific challenge to the development of plasma-based accelerators for high-energy colliders. In this Letter, we show how such a spin-polarized relativistic beam can be produced by ionization injection of electrons of certain atoms with a circularly polarized laser field into a beam-driven plasma wakefield accelerator, providing a much desired one-step solution to this challenge. Using time-dependent Schrödinger equation (TDSE) simulations, we show the propensity rule of spin-dependent ionization of xenon atoms can be reversed in the strong-field multiphoton regime compared with the non-adiabatic tunneling regime, leading to high total spin polarization. Furthermore, three-dimensional particle-in-cell simulations are incorporated with TDSE simulations, providing start-to-end simulations of spin-dependent strong-field ionization of xenon atoms and subsequent trapping, acceleration, and preservation of electron spin polarization in lithium plasma. We show the generation of a high-current (0.8 kA), ultralow-normalized-emittance (∼37 nm), and high-energy (2.7 GeV) electron beam within just 11 cm distance, with up to ∼31% net spin polarization. Higher current, energy, and net spin-polarization beams are possible by optimizing this concept, thus solving a long-standing problem facing the development of plasma accelerators.
Collapse
Affiliation(s)
- Zan Nie
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Fei Li
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Felipe Morales
- Max Born Institute, Max-Born-Strasse 2A, D-12489 Berlin, Germany
| | | | - Olga Smirnova
- Max Born Institute, Max-Born-Strasse 2A, D-12489 Berlin, Germany
| | - Weiming An
- Department of Astronomy, Beijing Normal University, Beijing 100875, China
| | - Noa Nambu
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Daniel Matteo
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Kenneth A Marsh
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Frank Tsung
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Warren B Mori
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Chan Joshi
- Department of Electrical and Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
3
|
Gong Z, Shou Y, Tang Y, Yan X. Energetic spin-polarized proton beams from two-stage coherent acceleration in laser-driven plasma. Phys Rev E 2020; 102:053212. [PMID: 33327078 DOI: 10.1103/physreve.102.053212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/27/2020] [Indexed: 11/07/2022]
Abstract
We propose a scheme to overcome the great challenge of polarization loss in spin-polarized ion acceleration. When a petawatt laser pulse penetrates through a compound plasma target consisting of a double layer slab and prepolarized hydrogen halide gas, a strong forward moving quasistatic longitudinal electric field is constructed by the self-generated laser-driven plasma. This field with a varying drift velocity efficiently boosts the prepolarized protons via a two-stage coherent acceleration process. Its merit is not only achieving a highly energetic beam but also eliminating the undesired polarization loss of the accelerated protons. We study the proton dynamics via Hamiltonian analyses, specifically deriving the threshold of triggering the two-stage coherent acceleration. To confirm the theoretical predictions, we perform three-dimensional PIC simulations, where unprecedented proton beams with energy approximating half GeV and polarization ratio ∼ 94% are obtained.
Collapse
Affiliation(s)
- Zheng Gong
- SKLNPT, KLHEDP, CAPT, and School of Physics, Peking University, Beijing 100871, China
| | - Yinren Shou
- SKLNPT, KLHEDP, CAPT, and School of Physics, Peking University, Beijing 100871, China
| | - Yuhui Tang
- SKLNPT, KLHEDP, CAPT, and School of Physics, Peking University, Beijing 100871, China
| | - Xueqing Yan
- SKLNPT, KLHEDP, CAPT, and School of Physics, Peking University, Beijing 100871, China.,CICEO, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
4
|
Jin L, Wen M, Zhang X, Hützen A, Thomas J, Büscher M, Shen B. Spin-polarized proton beam generation from gas-jet targets by intense laser pulses. Phys Rev E 2020; 102:011201. [PMID: 32795078 DOI: 10.1103/physreve.102.011201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/27/2020] [Indexed: 11/07/2022]
Abstract
A method of generating spin-polarized proton beams from a gas jet by using a multipetawatt laser is put forward. With currently available techniques of producing prepolarized monatomic gases from photodissociated hydrogen halide molecules and petawatt lasers, proton beams with energy ≳50 MeV and ≈80% polarization are proved to be obtained. Two-stage acceleration and spin dynamics of protons are investigated theoretically and by means of fully self-consistent three-dimensional particle-in-cell simulations. Our results predict the dependence of the beam polarization on the intensity of the driving laser pulse. Generation of bright energetic polarized proton beams would open a domain of polarization studies with laser driven accelerators and have potential application to enable effective detection in explorations of quantum chromodynamics.
Collapse
Affiliation(s)
- Luling Jin
- Department of Physics, Hubei University, Wuhan 430062, China
| | - Meng Wen
- Department of Physics, Hubei University, Wuhan 430062, China
| | - Xiaomei Zhang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Anna Hützen
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Johannes Thomas
- Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Markus Büscher
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Baifei Shen
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.,Department of Physics, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
5
|
Li YF, Chen YY, Wang WM, Hu HS. Production of Highly Polarized Positron Beams via Helicity Transfer from Polarized Electrons in a Strong Laser Field. PHYSICAL REVIEW LETTERS 2020; 125:044802. [PMID: 32794799 DOI: 10.1103/physrevlett.125.044802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/17/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The production of a highly polarized positron beam via nonlinear Breit-Wheeler processes during the interaction of an ultraintense circularly polarized laser pulse with a longitudinally spin-polarized ultrarelativistic electron beam is investigated theoretically. A new Monte Carlo method employing fully spin-resolved quantum probabilities is developed under the local constant field approximation to include three-dimensional polarization effects in strong laser fields. The produced positrons are longitudinally polarized through polarization transferred from the polarized electrons by the medium of high-energy photons. The polarization transfer efficiency can approach 100% for the energetic positrons moving at smaller deflection angles. This method simplifies the postselection procedure to generate high-quality positron beams in further applications. In a feasible scenario, a highly polarized (40%-65%), intense (10^{5}-10^{6}/bunch), collimated (5-70 mrad) positron beam can be obtained in a femtosecond timescale. The longitudinally polarized positron sources are desirable for applications in high-energy physics and material science.
Collapse
Affiliation(s)
- Yan-Fei Li
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue-Yue Chen
- Department of Physics, Shanghai Normal University, Shanghai 200234, China
| | - Wei-Min Wang
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua-Si Hu
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|