1
|
Carneiro da Cunha Martorelli V, Akabuogu E, Krašovec R, Roberts IS, Waigh TA. Electrical signaling in three-dimensional bacterial biofilms using an agent-based fire-diffuse-fire model. Phys Rev E 2024; 109:054402. [PMID: 38907459 DOI: 10.1103/physreve.109.054402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/28/2024] [Indexed: 06/24/2024]
Abstract
Agent-based models were used to describe electrical signaling in bacterial biofilms in three dimensions. Specifically, wavefronts of potassium ions in Escherichia coli biofilms subjected to stress from blue light were modeled from experimental data. Electrical signaling occurs only when the biofilms grow beyond a threshold size, which we have shown to vary with the K^{+} ion diffusivity, and the K^{+} ion threshold concentration, which triggered firing in the fire-diffuse-fire model. The transport of the propagating wavefronts shows superdiffusive scaling on time. K^{+} ion diffusivity is the main factor that affects the wavefront velocity. The K^{+} ion diffusivity and the firing threshold also affect the anomalous exponent for the propagation of the wavefront determining whether the wavefront is subdiffusive or superdiffusive. The geometry of the biofilm and its relation to the mean-square displacement (MSD) of the wavefront as a function of time was investigated for spherical, cylindrical, cubical, and mushroom-like structures. The MSD varied significantly with geometry; an additional regime to the kinetics occurred when the potassium wavefront leaves the biofilm. Adding cylindrical defects to the biofilm, which are known to occur in E. coli biofilms, also gave an extra kinetic regime to the wavefront MSD for the propagation through the defect.
Collapse
Affiliation(s)
- Victor Carneiro da Cunha Martorelli
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester M13 9PL, United Kingdom and Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Oxford Rd., Manchester M13 9PT, United Kingdom
| | - Emmanuel Akabuogu
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester M13 9PL, United Kingdom and Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Oxford Rd., Manchester M13 9PT, United Kingdom
| | - Rok Krašovec
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ian S Roberts
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, University of Manchester, Oxford Rd., Manchester M13 9PT, United Kingdom
| | - Thomas A Waigh
- Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, United Kingdom and Photon Science Institute, Alan Turing Building, Oxford Rd., Manchester M13 9PY, United Kingdom
| |
Collapse
|
2
|
Blee JA, Gorochowski TE, Hauert S. Optimization of periodic treatment strategies for bacterial biofilms using an agent-based in silico approach. J R Soc Interface 2024; 21:20240078. [PMID: 38593842 PMCID: PMC11003776 DOI: 10.1098/rsif.2024.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Biofilms are responsible for most chronic infections and are highly resistant to antibiotic treatments. Previous studies have demonstrated that periodic dosing of antibiotics can help sensitize persistent subpopulations and reduce the overall dosage required for treatment. Because the dynamics and mechanisms of biofilm growth and the formation of persister cells are diverse and are affected by environmental conditions, it remains a challenge to design optimal periodic dosing regimens. Here, we develop a computational agent-based model to streamline this process and determine key parameters for effective treatment. We used our model to test a broad range of persistence switching dynamics and found that if periodic antibiotic dosing was tuned to biofilm dynamics, the dose required for effective treatment could be reduced by nearly 77%. The biofilm architecture and its response to antibiotics were found to depend on the dynamics of persister cells. Despite some differences in the response of biofilm governed by different persister switching rates, we found that a general optimized periodic treatment was still effective in significantly reducing the required antibiotic dose. As persistence becomes better quantified and understood, our model has the potential to act as a foundation for more effective strategies to target bacterial infections.
Collapse
Affiliation(s)
- Johanna A. Blee
- School of Engineering Mathematics and Technology, University of Bristol, Ada Lovelace Building, Tankard's Close, Bristol BS8 1TW, UK
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- BrisEngBio, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Sabine Hauert
- School of Engineering Mathematics and Technology, University of Bristol, Ada Lovelace Building, Tankard's Close, Bristol BS8 1TW, UK
- BrisEngBio, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
3
|
Akabuogu E, Zhang L, Krašovec R, Roberts IS, Waigh TA. Electrical Impedance Spectroscopy with Bacterial Biofilms: Neuronal-like Behavior. NANO LETTERS 2024; 24:2234-2241. [PMID: 38320294 PMCID: PMC10885197 DOI: 10.1021/acs.nanolett.3c04446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Negative capacitance at low frequencies for spiking neurons was first demonstrated in 1941 (K. S. Cole) by using extracellular electrodes. The phenomenon subsequently was explained by using the Hodgkin-Huxley model and is due to the activity of voltage-gated potassium ion channels. We show that Escherichia coli (E. coli) biofilms exhibit significant stable negative capacitances at low frequencies when they experience a small DC bias voltage in electrical impedance spectroscopy experiments. Using a frequency domain Hodgkin-Huxley model, we characterize the conditions for the emergence of this feature and demonstrate that the negative capacitance exists only in biofilms containing living cells. Furthermore, we establish the importance of the voltage-gated potassium ion channel, Kch, using knock-down mutants. The experiments provide further evidence for voltage-gated ion channels in E. coli and a new, low-cost method to probe biofilm electrophysiology, e.g., to understand the efficacy of antibiotics. We expect that the majority of bacterial biofilms will demonstrate negative capacitances.
Collapse
Affiliation(s)
- Emmanuel
U. Akabuogu
- Division
of Infection, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, University
of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
- Biological
Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Lin Zhang
- Biological
Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Rok Krašovec
- Division
of Evolution, Infection and Genomics, School of Biological Sciences,
Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United
Kingdom
| | - Ian S. Roberts
- Division
of Infection, Lydia Becker Institute of Immunology and Inflammation,
School of Biological Sciences, University
of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Thomas A. Waigh
- Biological
Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Photon
Science Institute, Alan
Turing Building, Oxford Road, Manchester, M13 9PY, United
Kingdom
| |
Collapse
|
4
|
Waigh TA, Korabel N. Heterogeneous anomalous transport in cellular and molecular biology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:126601. [PMID: 37863075 DOI: 10.1088/1361-6633/ad058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
It is well established that a wide variety of phenomena in cellular and molecular biology involve anomalous transport e.g. the statistics for the motility of cells and molecules are fractional and do not conform to the archetypes of simple diffusion or ballistic transport. Recent research demonstrates that anomalous transport is in many cases heterogeneous in both time and space. Thus single anomalous exponents and single generalised diffusion coefficients are unable to satisfactorily describe many crucial phenomena in cellular and molecular biology. We consider advances in the field ofheterogeneous anomalous transport(HAT) highlighting: experimental techniques (single molecule methods, microscopy, image analysis, fluorescence correlation spectroscopy, inelastic neutron scattering, and nuclear magnetic resonance), theoretical tools for data analysis (robust statistical methods such as first passage probabilities, survival analysis, different varieties of mean square displacements, etc), analytic theory and generative theoretical models based on simulations. Special emphasis is made on high throughput analysis techniques based on machine learning and neural networks. Furthermore, we consider anomalous transport in the context of microrheology and the heterogeneous viscoelasticity of complex fluids. HAT in the wavefronts of reaction-diffusion systems is also considered since it plays an important role in morphogenesis and signalling. In addition, we present specific examples from cellular biology including embryonic cells, leucocytes, cancer cells, bacterial cells, bacterial biofilms, and eukaryotic microorganisms. Case studies from molecular biology include DNA, membranes, endosomal transport, endoplasmic reticula, mucins, globular proteins, and amyloids.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nickolay Korabel
- Department of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
5
|
Makino D, Ueki A, Matsumoto H, Nagamine K. Minimally invasive current-controlled electrical stimulation system for bacteria using highly capacitive conducting polymer-modified electrodes. Bioelectrochemistry 2023; 149:108290. [DOI: 10.1016/j.bioelechem.2022.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
|
6
|
Blee JA, Roberts IS, Waigh TA. Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Phys Biol 2020; 17:036001. [PMID: 32050190 DOI: 10.1088/1478-3975/ab759a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The majority of chronic infections are caused by biofilms, which have higher levels of antibiotic resistance than planktonic growth. Violet-blue 405 nm light has recently emerged as a novel bactericide, but limited studies have been conducted on its effectiveness against biofilms. We found that in response to 405 nm light both Pseudomonas aeruginosa and Bacillus subtilis biofilms exhibited cell dispersal and membrane potential hyperpolarisations. The response to 405 nm light depended on the stage of biofilm growth. The use of reactive oxygen species scavengers reduced membrane hyperpolarisation and biofilm dispersal in response to 405 nm light. This is the first time that membrane potential hyperpolarisations have been linked with photooxidative stress in bacteria and with biofilm dispersal. These results provide a new insight into the role of membrane potentials in the bacterial stress response and could be used in the development of 405 nm light based biofilm treatments.
Collapse
Affiliation(s)
- J A Blee
- Division of Infection, Lydia Becker Institute of Immunology and Inflammation Immunity & Respiratory Medicine, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Oxford Road, M13 9PT, United Kingdom. Biological Physics, Department of Physics and Astronomy, School of Natural Sciences, University of Manchester, Oxford Road, M13 9PL, United Kingdom. Photon Science Institute, Alan Turing Building, University of Manchester, Oxford Road, M13 9PL, United Kingdom
| | | | | |
Collapse
|