1
|
Ruan H, Yuan J, Xu Y, He J, Ma Y, Wang J. Performance enhancement of quantum Brayton engine via Bose-Einstein condensation. Phys Rev E 2024; 109:024126. [PMID: 38491606 DOI: 10.1103/physreve.109.024126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
Bose-Einstein condensation is a quintessential characteristic of Bose systems. We investigate the finite-time performance of an endoreversible quantum Brayton heat engine operating with an ideal Bose gas with a finite number of particles confined in a d-dimensional harmonic trap. The working medium of these engines may work in the condensation, noncondensation, and near-critical point regimes, respectively. We demonstrate that the existence of the phase transition during the cycle leads to enhanced engine performance by increasing power output and efficiencies corresponding to maximum power and maximum efficient power. We also show that the quantum engine working across the Bose-Einstein condensation in N-particle Bose gas outperforms an ensemble of independent single-particle heat engines. The difference in the machine performance can be explained in terms of the behavior of specific heat at constant pressure near the critical point regime.
Collapse
Affiliation(s)
- Huilin Ruan
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jiehong Yuan
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yang Xu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Pei JH, Chen JF, Quan HT. Exploring quasiprobability approaches to quantum work in the presence of initial coherence: Advantages of the Margenau-Hill distribution. Phys Rev E 2023; 108:054109. [PMID: 38115414 DOI: 10.1103/physreve.108.054109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/09/2023] [Indexed: 12/21/2023]
Abstract
In quantum thermodynamics, the two-projective-measurement (TPM) scheme provides a successful description of stochastic work only in the absence of initial quantum coherence. Extending the quantum work distribution to quasiprobability is a general way to characterize work fluctuation in the presence of initial coherence. However, among a large number of different definitions, there is no consensus on the most appropriate work quasiprobability. In this article, we list several physically reasonable requirements including the first law of thermodynamics, time-reversal symmetry, positivity of second-order moment, and a support condition for the work distribution. We prove that the only definition that satisfies all these requirements is the Margenau-Hill (MH) quasiprobability of work. In this sense, the MH quasiprobability of work shows its advantages over other definitions. As an illustration, we calculate the MH work distribution of a breathing harmonic oscillator with initial squeezed states and show the convergence to classical work distribution in the classical limit.
Collapse
Affiliation(s)
- Ji-Hui Pei
- School of Physics, Peking University, Beijing 100871, China
| | - Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China
| | - H T Quan
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Damas GG, de Assis RJ, de Almeida NG. Cooling with fermionic thermal reservoirs. Phys Rev E 2023; 107:034128. [PMID: 37073057 DOI: 10.1103/physreve.107.034128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/06/2023] [Indexed: 04/20/2023]
Abstract
The quantum reservoirs commonly considered in open-quantum systems theory are those modeled by quantum harmonic oscillators, which are called bosonic reservoirs. Recently, quantum reservoirs modeled by two-level systems, the so-called fermionic reservoirs, have received attention due to their features. Given that the components of these reservoirs have a finite number of energy levels, unlike bosonic reservoirs, some studies are being carried out to explore the advantages of using this type of reservoir, especially in the operation of heat machines. In this paper, we carry out a case study of a quantum refrigerator operating in the presence of bosonic or fermionic thermal reservoirs, and we show that fermionic baths have advantages over bosonic ones.
Collapse
Affiliation(s)
- Gabriella G Damas
- Instituto de Física, Universidade Federal de Goiás, 74.001-970 Goiânia-GO, Brazil
| | - Rogério J de Assis
- Instituto de Física, Universidade Federal de Goiás, 74.001-970 Goiânia-GO, Brazil
- Departamento de Física, Universidade Federal de São Carlos, 13.565-905 São Carlos-São Paulo, Brazil
| | - Norton G de Almeida
- Instituto de Física, Universidade Federal de Goiás, 74.001-970 Goiânia-GO, Brazil
| |
Collapse
|
4
|
Chen YH, Chen JF, Fei Z, Quan HT. Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle. Phys Rev E 2022; 106:024105. [PMID: 36109948 DOI: 10.1103/physreve.106.024105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The Curzon-Ahlborn (CA) efficiency, as the efficiency at the maximum power (EMP) of the endoreversible Carnot engine, has significant impact on finite-time thermodynamics. However, the CA engine is based on many assumptions. In the past few decades, although a lot of efforts have been made, a microscopic theory of the CA engine is still lacking. By adopting the method of the stochastic differential equation of energy, we formulate a microscopic theory of the CA engine realized with a highly underdamped Brownian particle in a class of nonharmonic potentials. This theory gives microscopic interpretation of all assumptions made by Curzon and Ahlborn. In other words, we find a microscopic counterpart of the CA engine in stochastic thermodynamics. Also, based on this theory, we derive the explicit expression of the protocol associated with the maximum power for any given efficiency, and we obtain analytical results of the power and the efficiency statistics for the Brownian CA engine. Our research brings new perspectives to experimental studies of finite-time microscopic heat engines featured with fluctuations.
Collapse
Affiliation(s)
- Y H Chen
- School of Physics, Peking University, Beijing 100871, China
| | - Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China
- Beijing Computational Science Research Center, Beijing 100193, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Zhaoyu Fei
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - H T Quan
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Chen JF, Li Y, Dong H. Simulating Finite-Time Isothermal Processes with Superconducting Quantum Circuits. ENTROPY (BASEL, SWITZERLAND) 2021; 23:353. [PMID: 33809653 PMCID: PMC8002232 DOI: 10.3390/e23030353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022]
Abstract
Finite-time isothermal processes are ubiquitous in quantum-heat-engine cycles, yet complicated due to the coexistence of the changing Hamiltonian and the interaction with the thermal bath. Such complexity prevents classical thermodynamic measurements of a performed work. In this paper, the isothermal process is decomposed into piecewise adiabatic and isochoric processes to measure the performed work as the internal energy change in adiabatic processes. The piecewise control scheme allows the direct simulation of the whole process on a universal quantum computer, which provides a new experimental platform to study quantum thermodynamics. We implement the simulation on ibmqx2 to show the 1/τ scaling of the extra work in finite-time isothermal processes.
Collapse
Affiliation(s)
- Jin-Fu Chen
- Beijing Computational Science Research Center, Beijing 100193, China;
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China;
| | - Ying Li
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China;
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China;
| |
Collapse
|
6
|
Chand S, Dasgupta S, Biswas A. Finite-time performance of a single-ion quantum Otto engine. Phys Rev E 2021; 103:032144. [PMID: 33862721 DOI: 10.1103/physreve.103.032144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
We study how a quantum heat engine based on a single trapped ion performs in finite time. The always-on thermal environment acts like the hot bath, while the motional degree of freedom of the ion plays the role of the effective cold bath. The hot isochoric stroke is implemented via the interaction of the ion with its hot environment, while a projective measurement of the internal state of the ion is performed as an equivalent to the cold isochoric stroke. The expansion and compression strokes are implemented via suitable change in applied magnetic field. We study in detail how the finite duration of each stroke affects the engine performance. We show that partial thermalization can in fact enhance the efficiency of the engine, due to the residual coherence, whereas faster expansion and compression strokes increase the inner friction and therefore reduce the efficiency.
Collapse
Affiliation(s)
- Suman Chand
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Shubhrangshu Dasgupta
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Asoka Biswas
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
7
|
Lee S, Ha M, Park JM, Jeong H. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction. Phys Rev E 2020; 101:022127. [PMID: 32168587 DOI: 10.1103/physreve.101.022127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
In finite-time quantum heat engines, some work is consumed to drive a working fluid accompanying coherence, which is called "friction." To understand the role of friction in quantum thermodynamics, we present a couple of finite-time quantum Otto cycles with two different baths: Agarwal versus Lindbladian. We solve them exactly and compare the performance of the Agarwal engine with that of the Lindbladian engine. In particular, we find remarkable and counterintuitive results that the performance of the Agarwal engine due to friction can be much higher than that in the quasistatic limit with the Otto efficiency, and the power of the Lindbladian engine can be nonzero in the short-time limit. Based on additional numerical calculations of these outcomes, we discuss possible origins of such differences between two engines and reveal them. Our results imply that, even with an equilibrium bath, a nonequilibrium working fluid brings on the higher performance than what an equilibrium working fluid does.
Collapse
Affiliation(s)
- Sangyun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34051, Korea
| | - Meesoon Ha
- Department of Physics Education, Chosun University, Gwangju 61452, Korea
| | - Jong-Min Park
- School of Physics, Korea Institute for Advanced Study, Seoul, 02455, Korea
| | - Hawoong Jeong
- Department of Physics and Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|