Bogatskaya AV, Volkova EA, Popov AM. Three-dimensional modeling of intense unipolar THz pulses formation during their amplification in nonequilibrium extended Xe plasma channel.
Phys Rev E 2022;
105:055203. [PMID:
35706270 DOI:
10.1103/physreve.105.055203]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
We develop a three-dimensional (3D) fully self-consistent model for analysis of an ultrashort THz pulse propagation and amplification in a nonequilibrium plasma channel formed in xenon by a femtosecond UV laser pulse. The model is based on the self-consistent solution of a second order wave equation in the cylindrical geometry and the kinetic Boltzmann equation for the electron velocity distribution function (EVDF) at different points of the spatially inhomogeneous nonequilibrium plasma channel. We analyze the wide range of plasma and seed pulse parameters and reveal the optimal regimes for producing high intensity outgoing THz fields as well as highly unipolar THz pulses within the proposed mechanism. It is demonstrated that the process of EVDF relaxation in plasma limits the amplification of THz pulses at the level of ∼10^{7}W/cm^{2}. Both focusing features of nonequilibrium plasma and the possibility of producing THz pulses with a high degree of unipolarity are confirmed for the case of 3D geometry.
Collapse