1
|
Zhou Y, You X, Liu W, Yang W, Jin X, Pei X, Xiang S, Zhou H, Liao Z, Tan Y. Arrays of Bowl-Shaped Janus Particle Film with Structured Colors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401063. [PMID: 38990072 DOI: 10.1002/smll.202401063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Structural colors generated via total internal reflection (TIR) using nanostructure-free micro-concave shapes have garnered increasing attention. However, the application of large micro-concave structures for structural coloration remains limited. Herein, a flexibly tunable structural color film fabricated by casting polydimethylsiloxane (PDMS) on an array of large poly(glycidyl methacrylate) (PGMA) bowl-shaped particles is reported. The resultant film exhibits tunable red to green structural colors with changing observation angles. Moreover, the color can be further tailored by altering the shape of the film itself. The incorporation of the PDMS layer not only facilitates a shift in the locus of TIR from the bottom surface to the top concave surface of the particles, thereby enabling the generation of structural color, but also confers enhanced flexibility to the film. Further decoration with silver nanoparticles imparts antimicrobial properties, yielding a novel antimicrobial coating material with structural colors. The simple and cost-effective strategy for the production of structural color films provides potential applications in antimicrobial coatings, enabling accessible and customizable structural coloration using big-size micro-concave particles.
Collapse
Affiliation(s)
- Yating Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xianzhu You
- Department of Respiratory and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wenying Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Xuru Jin
- Department of Respiratory and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Xiaopeng Pei
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Sheng Xiang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Hua Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Zhiyong Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Ying Tan
- Department of Respiratory and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| |
Collapse
|
2
|
Chuang WT, Chen SP, Tsai YB, Sun YS, Lin JM, Chen CY, Tsai YW, Chou CM, Hung YC, Chen TW, Wang WE, Huang CC, Hong PD, Jeng US, Chiang YW. Spontaneous Photonic Jammed Packing of Core-Shell Colloids in Conductive Aqueous Inks for Non-Iridescent Structural Coloration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52856-52866. [PMID: 39174350 DOI: 10.1021/acsami.4c09049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Integrating structural colors and conductivity into aqueous inks has the potential to revolutionize wearable electronics, providing flexibility, sustainability, and artistic appeal to electronic components. This study aims to introduce bioinspired color engineering to conductive aqueous inks. Our self-assembly approach involves mixing poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with sulfonic acid-modified polystyrene (sPS) colloids to generate non-iridescent structural colors in the inks. This spontaneous structural coloration occurs because PEDOT:PSS and sPS colloids can self-assemble into core-shell structures and reversibly cluster into photonic aggregates of maximally random jammed packing within the aqueous environment, as demonstrated by small-angle X-ray scattering. Dissipative particle dynamics simulation confirms that the self-assembly aggregation of PEDOT:PSS chains and sPS colloids can be manipulated by the polymer-colloid interactions. Utilizing the finite-difference time-domain method, we demonstrate that the photonic aggregates of the core-shell colloids achieve close to maximum jammed packing, making them suitable for producing vivid structural colors. These versatile conductive inks offer adjustable color saturation and conductivity, with conductivity levels reaching 36 S cm-1 through the addition of polyethylene glycol oligomer, while enhanced water resistance and mechanical stability are achieved by doping with a cross-linker, poly(ethylene glycol) diglycidyl ether. With these unique features, the inks can create flexible, patterned circuits through processes like coating, writing, and dyeing on large areas, providing eco-friendly, visually appealing colors for customizable, stylish, comfortable, and wearable electronic devices.
Collapse
Affiliation(s)
- Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Shu-Ping Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Yu-Bo Tsai
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Ya-Sen Sun
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Jhih-Min Lin
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Chun-Yu Chen
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Yi-Wei Tsai
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Che-Min Chou
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Yu-Chueh Hung
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tse-Wei Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-En Wang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chao-Chin Huang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Da Hong
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yeo-Wan Chiang
- Department of Materials and Optoelectronic Science and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
3
|
Yang W, Luo S, He Y, Wang H, Yu H. Carbon dot-loaded Fe 3O 4as photonic pigments for multilevel anti-counterfeiting. NANOTECHNOLOGY 2024; 35:465601. [PMID: 39159657 DOI: 10.1088/1361-6528/ad70bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Amorphous arrays assembled from colloidal microspheres are a way that obtains angle-independent structural colors. In order to obtain additional properties, colloidal microspheres, which are constituent units, can be modified with other materials. Here, we utilized the silane-functionalized carbon quantum dots (SiCDs) by incorporating them into the Stöber reaction to fabricate Fe3O4@SiO2/SiCDs nanospheres with a core-shell structure. Amorphous colloidal arrays (ACAs) were constructed on commercial printing paper using Fe3O4@SiO2/SiCDs nanoparticles as structural units by a simple permeation assembly. Macroscopically, the prepared ACAs exhibit the magnetic properties of Fe3O4, while under sunlight, they display bright, angle-independent structural colors. Under ultraviolet light, the array shows significant fluorescence. This enables the presentation of multidimensional information under varying magnetic and lighting conditions. By adjusting the thickness of the outer SiO2/SiCDs composite layer, the optical properties and magnetism can be controlled easily. Moreover, due to the strong light absorption capability and high refractive index of Fe3O4, the digital patterns constructed with Fe3O4@SiO2/SiCDs nanospheres demonstrate excellent multi-level anti-counterfeiting characteristics, even under water exposure. The magnetic properties of Fe3O4@SiO2/SiCDs nanospheres, along with their distinct display characteristics under different optical environments, suggest their wide applicability in the fields of multifunctional anti-counterfeiting pigments, bioimaging, and sensing displays.
Collapse
Affiliation(s)
- Wei Yang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Site Luo
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yang He
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Han Wang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Haihu Yu
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
4
|
Zhang G, Xiao M. Enhancing color saturation in photonic glasses through optimized absorption. OPTICS EXPRESS 2024; 32:20432-20448. [PMID: 38859425 DOI: 10.1364/oe.516278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/01/2024] [Indexed: 06/12/2024]
Abstract
Photonic glasses, isotropically assembled nanoparticles with short-range correlation, can produce angle independent structural colors. They show broader reflectance spectra and lower saturated colors, compared to photonic crystals. Low color saturation creates barriers for photonic glasses to be used for coatings, cosmetics, and colors. Broadband absorbing materials are commonly used to absorb incoherently scattered light to enhance the saturation. However, there is limited understanding on how the absorption quantitatively affects the colors of photonic glasses. To this end, we here use a validated Monte Carlo-based multiple scattering model to investigate how absorption impacts the reflectance spectra in photonic glasses. We show that the color saturation can be maximized with an optimal level of absorption regardless of sample thickness or refractive index contrast between particles and matrix. We quantitatively demonstrate that the multiple scattering is largely reduced with the optimal absorption level and the reflectance is dominantly contributed by the single scattering. The optimal absorption occurs when the sample absorption mean free path is comparable to the transport mean free path, which offers a guidance on how much absorbing material is needed for creating highly saturated photonic glasses. This work will not only pave ways for pushing applications of angle-independent structural colors, but also improve our understanding of light scattering and absorption in short-range correlated disordered systems.
Collapse
|
5
|
Bauernfeind V, Ronikier A, Ronikier M, Kozlowski G, Steiner U, Wilts BD. Thin film structural color is widespread in slime molds (Myxomycetes, Amoebozoa). OPTICS EXPRESS 2024; 32:5429-5443. [PMID: 38439270 DOI: 10.1364/oe.511875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024]
Abstract
Brilliant colors in nature arise from the interference of light with periodic nanostructures resulting in structural color. While such biological photonic structures have long attracted interest in insects and plants, they are little known in other groups of organisms. Unexpected in the kingdom of Amoebozoa, which assembles unicellular organisms, structural colors were observed in myxomycetes, an evolutionary group of amoebae forming macroscopic, fungal-like structures. Previous work related the sparkling appearance of Diachea leucopodia to thin film interference. Using optical and ultrastructural characterization, we here investigated the occurrence of structural color across 22 species representing two major evolutionary clades of myxomycetes including 14 genera. All investigated species showed thin film interference at the peridium, producing colors with hues distributed throughout the visible range that were altered by pigmentary absorption. A white reflective layer of densely packed calcium-rich shells is observed in a compound peridium in Metatrichia vesparium, whose formation and function are still unknown. These results raise interesting questions on the biological relevance of thin film structural colors in myxomycetes, suggesting they may be a by-product of their reproductive cycle.
Collapse
|
6
|
Middleton R, Tunstad SA, Knapp A, Winters S, McCallum S, Whitney H. Self-assembled, disordered structural color from fruit wax bloom. SCIENCE ADVANCES 2024; 10:eadk4219. [PMID: 38324684 PMCID: PMC10849586 DOI: 10.1126/sciadv.adk4219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Many visually guided frugivores have eyes highly adapted for blue sensitivity, which makes it perhaps surprising that blue pigmented fruits are not more common. However, some fruits are blue even though they do not contain blue pigments. We investigate dark pigmented fruits with wax blooms, like blueberries, plums, and juniper cones, and find that a structural color mechanism is responsible for their appearance. The chromatic blue-ultraviolet reflectance arises from the interaction of the randomly arranged nonspherical scatterers with light. We reproduce the structural color in the laboratory by recrystallizing wax bloom, allowing it to self-assemble to produce the blue appearance. We demonstrate that blue fruits and structurally colored fruits are not constrained to those with blue subcuticular structure or pigment. Further, convergent optical properties appear across a wide phylogenetic range despite diverse morphologies. Epicuticular waxes are elements of the future bioengineering toolbox as sustainable and biocompatible, self-assembling, self-cleaning, and self-repairing optical biomaterials.
Collapse
Affiliation(s)
- Rox Middleton
- University of Bristol, Bristol, UK
- Technische Universität Dresden, Dresden, Germany
| | | | | | - Sandra Winters
- University of Bristol, Bristol, UK
- University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
7
|
Wang Z, Meng F, Kong M, Guo X, Zhang S, Zhang Y, Tang B. 2D Information Security System Based on Polyurethane Inverse Photonic Glass Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305825. [PMID: 37699756 DOI: 10.1002/smll.202305825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Indexed: 09/14/2023]
Abstract
Information security has become a major global problem in recent years. Thus, people continue to exert much effort in developing new information security technologies based on encryption and storage. In this study, a 2D information security technology based on polyurethane optical devices with inverse photonic glass structure (PU-IPG) is introduced. Based on 1) the swelling and plasticizing effects of various solvents on PU-IPG and 2) the capillary force that can produce geometric deformation on micro/nanostructures when solvents evaporate, a 2D information security system with two modules of decryption (structural color information display) and anticounterfeiting (structural color transformation) is successfully constructed. The spraying method adopted can be simple and fast and can provide a large area to build photonic glass templates, which greatly improves the capacity and category of information in the encryption system. The prepared PU-IPG optical devices can produce large-area multicolor output capability of information. These devices also have excellent mechanical properties, strong cycle stability, environmental friendliness, and low price. Therefore, the preparation strategy has great reference value and application prospects in the field of information security.
Collapse
Affiliation(s)
- Zhenzhi Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fantao Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Miao Kong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiaoyu Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
8
|
Llorens JS, Barbera L, Demirörs AF, Studart AR. Light-Based 3D Printing of Complex-Shaped Photonic Colloidal Glasses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302868. [PMID: 37470316 DOI: 10.1002/adma.202302868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/25/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Colloidal glasses display angle-independent structural color that is tunable by the size and local arrangement of sub-micrometer particles. While films, droplets, and microcapsules with isotropic structural color have been demonstrated, the shaping of colloidal glasses in three dimensions remains an open manufacturing challenge. Here, a light-based printing platform for the shaping of colloidal glasses into 3D objects featuring complex geometries and vivid structural color after thermal treatment is reported. Rheology, photopolymerization, and calcination experiments are performed to design the photoreactive resins leading to printable colloidal glasses. With the help of microscopy, scattering, and optical characterization, it is shown that the photonic properties of the printed objects reflect the locally ordered microstructure of the glass. The capability of the platform in creating 3D objects with isotropic structural color is illustrated by printing lattices and miniaturized sculpture replicas with unique shapes and multimaterial designs.
Collapse
Affiliation(s)
| | - Lorenzo Barbera
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Ahmet F Demirörs
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
- Soft Matter and Photonics, Department of Physics, University of Fribourg, 1700, Fribourg, Switzerland
| | - Andre R Studart
- Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
9
|
Heil CM, Patil A, Vanthournout B, Singla S, Bleuel M, Song JJ, Hu Z, Gianneschi NC, Shawkey MD, Sinha SK, Jayaraman A, Dhinojwala A. Mechanism of structural colors in binary mixtures of nanoparticle-based supraballs. SCIENCE ADVANCES 2023; 9:eadf2859. [PMID: 37235651 DOI: 10.1126/sciadv.adf2859] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Inspired by structural colors in avian species, various synthetic strategies have been developed to produce noniridescent, saturated colors using nanoparticle assemblies. Nanoparticle mixtures varying in particle chemistry and size have additional emergent properties that affect the color produced. For complex multicomponent systems, understanding the assembled structure and a robust optical modeling tool can empower scientists to identify structure-color relationships and fabricate designer materials with tailored color. Here, we demonstrate how we can reconstruct the assembled structure from small-angle scattering measurements using the computational reverse-engineering analysis for scattering experiments method and use the reconstructed structure in finite-difference time-domain calculations to predict color. We successfully, quantitatively predict experimentally observed color in mixtures containing strongly absorbing nanoparticles and demonstrate the influence of a single layer of segregated nanoparticles on color produced. The versatile computational approach that we present is useful for engineering synthetic materials with desired colors without laborious trial-and-error experiments.
Collapse
Affiliation(s)
- Christian M Heil
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
| | - Anvay Patil
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave., Akron, OH 44325, USA
| | - Bram Vanthournout
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Saranshu Singla
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave., Akron, OH 44325, USA
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20878, USA
- Department of Materials Science and Engineering, University of Maryland, 4418 Stadium Dr., College Park, MD 20742, USA
| | - Jing-Jin Song
- Department of Materials Science & Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Ziying Hu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL 60208, USA
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Sunil K Sinha
- Department of Physics, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave., Akron, OH 44325, USA
| |
Collapse
|
10
|
Lemcoff T, Alus L, Haataja JS, Wagner A, Zhang G, Pavan MJ, Yallapragada VJ, Vignolini S, Oron D, Schertel L, Palmer BA. Brilliant whiteness in shrimp from ultra-thin layers of birefringent nanospheres. NATURE PHOTONICS 2023; 17:485-493. [PMID: 37287680 PMCID: PMC10241642 DOI: 10.1038/s41566-023-01182-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/24/2023] [Indexed: 06/09/2023]
Abstract
A fundamental question regarding light scattering is how whiteness, generated from multiple scattering, can be obtained from thin layers of materials. This challenge arises from the phenomenon of optical crowding, whereby, for scatterers packed with filling fractions higher than ~30%, reflectance is drastically reduced due to near-field coupling between the scatterers. Here we show that the extreme birefringence of isoxanthopterin nanospheres overcomes optical crowding effects, enabling multiple scattering and brilliant whiteness from ultra-thin chromatophore cells in shrimp. Strikingly, numerical simulations reveal that birefringence, originating from the spherulitic arrangement of isoxanthopterin molecules, enables intense broadband scattering almost up to the maximal packing for random spheres. This reduces the thickness of material required to produce brilliant whiteness, resulting in a photonic system that is more efficient than other biogenic or biomimetic white materials which operate in the lower refractive index medium of air. These results highlight the importance of birefringence as a structural variable to enhance the performance of such materials and could contribute to the design of biologically inspired replacements for artificial scatterers like titanium dioxide.
Collapse
Affiliation(s)
- Tali Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lotem Alus
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Johannes S. Haataja
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Applied Physics, Aalto University School of Science, Espoo, Finland
| | - Avital Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gan Zhang
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Present Address: College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Mariela J. Pavan
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Dan Oron
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lukas Schertel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Physics, University of Fribourg, Fribourg, Switzerland
| | - Benjamin A. Palmer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
11
|
Scheffold F, Haberko J, Magkiriadou S, Froufe-Pérez LS. Transport through Amorphous Photonic Materials with Localization and Bandgap Regimes. PHYSICAL REVIEW LETTERS 2022; 129:157402. [PMID: 36269948 DOI: 10.1103/physrevlett.129.157402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
We propose a framework that unifies the description of light transmission through three-dimensional amorphous dielectric materials that exhibit both localization and a photonic bandgap. We argue that direct, coherent reflection near and in the bandgap attenuates the generation of diffuse or localized photons. Using the self-consistent theory of localization and considering the density of states of photons, we can quantitatively describe the total transmission of light for all transport regimes: transparency, light diffusion, localization, and bandgap. Comparison with numerical simulations of light transport through hyperuniform networks supports our theoretical approach.
Collapse
Affiliation(s)
- Frank Scheffold
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Jakub Haberko
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Aleja Mickiewicza 30, Krakow 30-059, Poland
| | - Sofia Magkiriadou
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Luis S Froufe-Pérez
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
12
|
Yazhgur P, Muller N, Scheffold F. Inkjet Printing of Structurally Colored Self-Assembled Colloidal Aggregates. ACS PHOTONICS 2022; 9:2809-2816. [PMID: 35996372 PMCID: PMC9389609 DOI: 10.1021/acsphotonics.2c00627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Structurally colored materials offer increased stability, high biocompatibility, and a large variety of colors, which can hardly be reached simultaneously using conventional chemical pigments. However, for practical applications, such as inkjet printing, it is vital to compartmentalize these materials in small building blocks (with sizes ideally below 5 μm) and create "ready-to-use" inks. The latter can be achieved by using photonic balls (PB): spherical aggregates of nanoparticles. Here, we demonstrate, for the first time, how photonic ball dispersions can be used as inkjet printing inks. We use solvent drying techniques to manufacture structurally colored colloidal aggregates. The as-fabricated photonic balls are dispersed in pentanol to form ink. A custom-made inkjet printing platform equipped with an industrial printhead and recirculation fluidic system is used to print complex structurally colored patterns. We increase color purity and suppress multiple scattering by introducing carbon black as a broadband light absorber.
Collapse
Affiliation(s)
- Pavel Yazhgur
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Nicolas Muller
- iPrint Institute, HEIA-FR, HES-SO University of Applied Sciences and Arts Western Switzerland, Fribourg CH-1700, Switzerland
| | - Frank Scheffold
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural color. Nat Commun 2022; 13:4397. [PMID: 35906208 PMCID: PMC9338281 DOI: 10.1038/s41467-022-32060-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Structural color is frequently exploited by living organisms for biological functions and has also been translated into synthetic materials as a more durable and less hazardous alternative to conventional pigments. Additive manufacturing approaches were recently exploited for the fabrication of exquisite photonic objects, but the angle-dependence observed limits a broader application of structural color in synthetic systems. Here, we propose a manufacturing platform for the 3D printing of complex-shaped objects that display isotropic structural color generated from photonic colloidal glasses. Structurally colored objects are printed from aqueous colloidal inks containing monodisperse silica particles, carbon black, and a gel-forming copolymer. Rheology and Small-Angle-X-Ray-Scattering measurements are performed to identify the processing conditions leading to printed objects with tunable structural colors. Multimaterial printing is eventually used to create complex-shaped objects with multiple structural colors using silica and carbon as abundant and sustainable building blocks. There is a growing interest in mimicking structural color in natural systems aiming for sustainable and long-lasting color. Here the authors report a platform for three-dimensional printing assembly of colloidal particles of silica and carbon that have programmable structural color.
Collapse
|
14
|
Li Z, Ma T, Li S, Gu W, Lu L, Yang H, Dai Y, Wang R. High-Efficiency, Mass-Producible, and Colored Solar Photovoltaics Enabled by Self-Assembled Photonic Glass. ACS NANO 2022; 16:11473-11482. [PMID: 35848579 DOI: 10.1021/acsnano.2c05840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Building-integrated photovoltaics is a crucial technology for developing zero-energy buildings and sustainable cities, while great efforts are required to make photovoltaic (PV) panels aesthetically pleasing. This places an urgent demand on PV colorization technology that has a low impact on power conversion efficiency (PCE) and is simultaneously mass-producible at a low cost. To address this challenge, this study contributes a colorization strategy for solar PVs based on short-range correlated dielectric microspheres, i.e., photonic glass. Through theoretical studies, first we demonstrate that the photonic glass self-assembled by high-index microspheres could enable both colored solar cells and modules, with easily variable colors and negligible parasitic absorption. By a fast spray coating process of colloidal monodisperse ZnS microspheres, we show the photonic glass layer could be easily deposited on silicon solar cells, enabling them to have structural colors. Through varying microsphere sizes, solar cells with different colors are achieved, showing low PCE loss compared to normal black cells. These colored solar cells are also encapsulated with a general lamination process to produce PV modules with various colors and patterns at a stunning PCE approaching 21%. Moreover, the long-term stability is subsequently verified by aging tests including an outdoor exposure for 10 days and a damp-heat test for 1000 h, and the mass producibility is demonstrated by presenting a colored PV panel with an output power over 108 W. These results confirm photonic glass as a promising strategy for colored PVs possessing high efficiency and practical applicability.
Collapse
Affiliation(s)
- Zhenpeng Li
- Engineering Research Centre for Solar Energy and Refrigeration of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Tao Ma
- Engineering Research Centre for Solar Energy and Refrigeration of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Senji Li
- Engineering Research Centre for Solar Energy and Refrigeration of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wenbo Gu
- School of Electrical Engineering, Xinjiang University, Urumqi 830046, Xinjiang, People's Republic of China
| | - Lin Lu
- Renewable Energy Research Group, Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Hongxing Yang
- Renewable Energy Research Group, Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Yanjun Dai
- Engineering Research Centre for Solar Energy and Refrigeration of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ruzhu Wang
- Engineering Research Centre for Solar Energy and Refrigeration of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
15
|
Kim D, Heller EJ. Bragg Scattering from a Random Potential. PHYSICAL REVIEW LETTERS 2022; 128:200402. [PMID: 35657885 DOI: 10.1103/physrevlett.128.200402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
A potential for propagation of a wave in two dimensions is constructed from a random superposition of plane waves around all propagation angles. Surprisingly, despite the lack of periodic structure, sharp Bragg diffraction of the wave is observed, analogous to a powder diffraction pattern. The scattering is partially resonant, so Fermi's golden rule does not apply. This phenomenon would be experimentally observable by sending an atomic beam into a chaotic cavity populated by a single mode laser.
Collapse
Affiliation(s)
- Donghwan Kim
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Eric J Heller
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
16
|
Bergman MJ, García-Astrain C, Fuchs N, Manne K, Yazhgur P, Froufe-Pérez LS, Liz-Marzán LM, Scheffold F. Macroporous Silica Foams Fabricated via Soft Colloid Templating. SMALL METHODS 2022; 6:e2101491. [PMID: 35218331 DOI: 10.1002/smtd.202101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Macroporous materials with controlled pore sizes are of high scientific and technological interest, due to their low specific weight, as well as unique acoustic, thermal, or optical properties. Solid foams made of titania, silica, or silicon, as representative materials, have been previously obtained with several hundred nanometer pore sizes, by using sacrificial templates such as spherical emulsion droplets or colloidal particles. Macroporous structures in particular are excellent candidates as photonic materials with applications in structural coloration and photonic bandgap devices. However, whereas using spherical building blocks as templates may provide tight control over pore shape and size, it results in materials with an often unfavorable local topology. Templating dry-foam or compressed-emulsion structures appear as attractive alternatives, but have not been demonstrated so far for submicron pore sizes. Herein, the use of soft, flexible microgel colloids decorated with silica nanoparticles as templates of macroporous foams is reported. These purposely synthesized core-shell colloids are assembled at ultra-high effective volume fractions by centrifuging and thermal swelling, thereby resulting in uniform disordered materials with facetted pores, mimicking dry foams. After removal of the polymer component via calcination, lightweight pure silica structures are obtained with a well-defined cellular or network topology.
Collapse
Affiliation(s)
- Maxime J Bergman
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Clara García-Astrain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Nathan Fuchs
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Kalpana Manne
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Pavel Yazhgur
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Luis S Froufe-Pérez
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, 43009, Bilbao, Spain
| | - Frank Scheffold
- Department of Physics and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, CH-1700, Fribourg, Switzerland
| |
Collapse
|
17
|
Liu T, Liu T, Gao F, Glotzer SC, Solomon MJ. Structural Color Spectral Response of Dense Structures of Discoidal Particles Generated by Evaporative Assembly. J Phys Chem B 2022; 126:1315-1324. [PMID: 35112869 DOI: 10.1021/acs.jpcb.1c10015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural color─optical response due to light diffraction or scattering from submicrometer-scale structures─is a promising means for sustainable coloration. To expand the functionality of structural color, we introduce discoidal shape anisotropy into colloidal particles and characterize how structural color reflection can be engineered. Uniaxial compression of spheres is used to prepare discoids with varying shape anisotropy and particle size. Discoids are assembled into thin films by evaporation. We find that structural color of assembled films displays components due to diffuse backscattering and multilayer reflection. As discoids become more anisotropic, the assembled structure is more disordered. The multilayer reflection is suppressed─peak height becomes smaller and peak width broader; thus, the color is predominantly from diffuse backscattering. Finally, the discoid structural color can be tuned by varying particle size and has low dependence on viewing angle. We corroborate our results by comparing experimental microstructures and measured reflection spectra with Monte Carlo simulations and calculated spectra by finite-difference time-domain simulation. Our findings demonstrate that the two tunable geometries of discoids─size and aspect ratio─generate different effects on spectral response and therefore can function as independent design parameters that expand possibilities for producing noniridescent structural color.
Collapse
Affiliation(s)
- Tianyu Liu
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianyu Liu
- Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fengyi Gao
- Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sharon C Glotzer
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Solomon
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Priya, Saini SK, Nair RV. Polymer-based self-assembled photonic crystals to tune light transport and emission. Chem Commun (Camb) 2022; 58:1481-1494. [PMID: 35018400 DOI: 10.1039/d1cc05787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The advent of photonic crystals has made possible the idea of controlling flows of light, which has revolutionized photonics-based technology. Photonic crystals are constructed based on periodic refractive index variations in one-, two-, or three-spatial dimensions on the optical-wavelength scale. Photonic crystals show inherent photonic stop gaps or band gaps depending upon the crystal symmetry and refractive index contrast. Showing ease of fabrication, polymer-based self-assembled photonic crystals with stop gaps have been widely explored. We discuss angle- and polarization-dependent stop gap creation and splitting at higher angles of incidence. The observed stop gaps in self-assembled photonic crystals often deviate from theoretical predictions due to experimental constraints, such as finite size and fabrication disorders associated with samples. We perform micro-reflectivity experiments on a single domain, showing minimal disorder, with nearly 100% reflectivity, which is in agreement with theory. We obtain more than 75% emission intensity suppression and a 30% increase in the emission lifetime at the stop gap using micro-emission experiments in a single domain. This enables us to study the role of finite-size effects in photonic crystals in modifying the emission properties. We observe the linear scaling of the emission intensity suppression and the emission rate with the finite size of the crystal. Our single-domain experimental studies reveal that the use of low index-contrast self-assembled photonic crystals is a potential platform for strategically modifying light transport and emission properties.
Collapse
Affiliation(s)
- Priya
- Laboratory for Nano-Scale Optics and Meta-Materials (LaNOM), Department of Physics, Indian Institute of Technology Ropar, Punjab 140001, India.
| | - Sudhir Kumar Saini
- Laboratory for Nano-Scale Optics and Meta-Materials (LaNOM), Department of Physics, Indian Institute of Technology Ropar, Punjab 140001, India.
| | - Rajesh V Nair
- Laboratory for Nano-Scale Optics and Meta-Materials (LaNOM), Department of Physics, Indian Institute of Technology Ropar, Punjab 140001, India.
| |
Collapse
|
19
|
Areias LRP, Mariz I, Maçôas E, Farinha JPS. Reflectance Confocal Microscopy: A Powerful Tool for Large Scale Characterization of Ordered/Disordered Morphology in Colloidal Photonic Structures. ACS NANO 2021; 15:11779-11788. [PMID: 34240840 DOI: 10.1021/acsnano.1c02813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of appropriate methods to correlate the structure and optical properties of colloidal photonic structures is still a challenge. Structural information is mostly obtained by electron, X-ray, or optical microscopy methods and X-ray diffraction, while bulk spectroscopic methods and low resolution bright-field microscopy are used for optical characterization. Here, we describe the use of reflectance confocal microscopy as a simple and intuitive technique to provide a direct correlation between the ordered/disordered structural morphology of colloidal crystals and glasses, and their corresponding optical properties.
Collapse
Affiliation(s)
- Laurinda R P Areias
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Inês Mariz
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Ermelinda Maçôas
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - José Paulo S Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| |
Collapse
|
20
|
Xiao M, Stephenson AB, Neophytou A, Hwang V, Chakrabarti D, Manoharan VN. Investigating the trade-off between color saturation and angle-independence in photonic glasses. OPTICS EXPRESS 2021; 29:21212-21224. [PMID: 34265912 DOI: 10.1364/oe.425399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Photonic glasses-isotropic structures with short-range correlations-can produce structural colors with little angle-dependence, making them an alternative to dyes in applications such as cosmetics, coatings, and displays. However, the low angle-dependence is often accompanied by low color saturation. To investigate how the short-range correlations affect the trade-off between saturation and angle-independence, we vary the structure factor and use a Monte Carlo model of multiple scattering to investigate the resulting optical properties. We use structure factors derived from analytical models and calculated from simulations of disordered sphere packings. We show that the trade-off is controlled by the first peak of the structure factor. It is possible to break the trade-off by tuning the width of this peak and controlling the sample thickness. Practically, this result shows that the protocol used to pack particles into a photonic glass is important to the optical properties.
Collapse
|
21
|
Beck LM, Yallapragada VJ, Upcher A, Palmer BA, Addadi L, Oron D. Measuring the optical properties of nanoscale biogenic spherulites. OPTICS EXPRESS 2021; 29:20863-20871. [PMID: 34266166 DOI: 10.1364/oe.430376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
Recent studies of optical reflectors as part of the vision apparatus in the eyes of decapod crustaceans revealed assemblies of nanoscale spherulites - spherical core-shell nanoparticles with radial birefringence. Simulations performed on the system highlighted the advantages of optical anisotropy in enhancing the functionality of these structures. So far, calculations of the nanoparticle optical properties have relied on refractive indices obtained using ab-initio calculations. Here we describe a direct measurement of the tangential refractive index of the spherulites, which corresponds to the in-plane refractive index of crystalline isoxanthopterin nanoplatelets. We utilize measurements of scattering spectra of individual spherulites and determine the refractive index by analyzing the spectral signatures of scattering resonances. Our measurements yield a median tangential refractive index of 1.88, which is in reasonable agreement with theoretical predictions. Furthermore, our results indicate that the optical properties of small spherulite assemblies are largely determined by the tangential index.
Collapse
|
22
|
Yamaguchi S, Karaer O, Lee C, Sakai T, Imazato S. Color matching ability of resin composites incorporating supra-nano spherical filler producing structural color. Dent Mater 2021; 37:e269-e275. [PMID: 33563472 DOI: 10.1016/j.dental.2021.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the optical properties of supra-nano spherical fillers with different diameters and the color matching ability of resin composites (RC) incorporating these fillers. METHODS Two types of SiO2-ZrO2 nano fillers with different diameters (150nm and 260nm) were used. The size distribution of each filler was measured and filler morphology was observed. The colors and spectral reflection spectra were measured by a spectral reflectometer. Experimental RCs incorporating ϕ150-nm/ϕ260-nm filler (D150RC/D260RC) were prepared. For the base dentin part, disc specimens (Estelite Astelia: A1B, A2B, A3B, A3.5B, or A4B) were prepared with a cylindrical cavity. Estelite Astelia with NE shade was layered on top as the enamel layer. Disk specimens with different cavity depths were prepared using A3B shade. Experimental RC was used to fill the cavity, and spectral reflection spectrums were obtained and analyzed. Filtek Supreme Ultra (FSU) with A3B shade was used (n=10) as a control. RESULTS Both ϕ150-nm and ϕ260-nm nano fillers showed uniform spherical shape and exhibited no aggregation. The maximum peaks of the spectral reflection spectra of the ϕ150-nm and ϕ260-nm nano fillers were 380nm and 580nm, producing structural colors close to blue and yellow, respectively. The spectral reflection spectrum of FSU had a broad peak at 540nm, and D150RC had a significant peak at 420nm. The D260RC specimen had a broad peak at 680nm. The peaks of D150RC and D260RC significantly decreased in accordance with the shift in base RC shade from A1B to A4B. There was no significant difference in the peak of the reflection spectral spectra among different cavity depths of D260RC. These results suggest that the experimental RC could reflect base RC colors via the matrix resin, and the amount of transmitted light from the base RC was not much different with cavity depth. SIGNIFICANCE D260RC producing structural color demonstrated a broad spectrum and reduction in brightness and chromatic value by adapting to surrounding restorative materials, suggesting its ability to enhance the chameleon (blending) effects to improve color matching. D260RC showed better color matching ability than resin composite containing uniformly sized ϕ150-nm SiO2-ZrO2 supra-nano spherical filler.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Oğuzcan Karaer
- Department of Prosthodontics, Faculty of Dentistry, Ankara University, 06500 Besevler, Ankara, Turkey
| | - Chunwoo Lee
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiko Sakai
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Designing angle-independent structural colors using Monte Carlo simulations of multiple scattering. Proc Natl Acad Sci U S A 2021; 118:2015551118. [PMID: 33472972 DOI: 10.1073/pnas.2015551118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disordered nanostructures with correlations on the scale of visible wavelengths can show angle-independent structural colors. These materials could replace dyes in some applications because the color is tunable and resists photobleaching. However, designing nanostructures with a prescribed color is difficult, especially when the application-cosmetics or displays, for example-requires specific component materials. A general approach to solving this constrained design problem is modeling and optimization: Using a model that predicts the color of a given system, one optimizes the model parameters under constraints to achieve a target color. For this approach to work, the model must make accurate predictions, which is challenging because disordered nanostructures have multiple scattering. To address this challenge, we develop a Monte Carlo model that simulates multiple scattering of light in disordered arrangements of spherical particles or voids. The model produces quantitative agreement with measurements when we account for roughness on the surface of the film, particle polydispersity, and wavelength-dependent absorption in the components. Unlike discrete numerical simulations, our model is parameterized in terms of experimental variables, simplifying the connection between simulation and fabrication. To demonstrate this approach, we reproduce the color of the male mountain bluebird (Sialia currucoides) in an experimental system, using prescribed components and a microstructure that is easy to fabricate. Finally, we use the model to find the limits of angle-independent structural colors for a given system. These results enable an engineering design approach to structural color for many different applications.
Collapse
|
24
|
Jacucci G, Vignolini S, Schertel L. The limitations of extending nature's color palette in correlated, disordered systems. Proc Natl Acad Sci U S A 2020; 117:23345-23349. [PMID: 32900921 PMCID: PMC7519302 DOI: 10.1073/pnas.2010486117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Living organisms have developed a wide range of appearances from iridescent to matte textures. Interestingly, angular-independent structural colors, where isotropy in the scattering structure is present, only produce coloration in the blue wavelength region of the visible spectrum. One might, therefore, wonder if such observation is a limitation of the architecture of the palette of materials available in nature. Here, by exploiting numerical modeling, we discuss the origin of isotropic structural colors without restriction to a specific light scattering regime. We show that high color purity and color saturation cannot be reached in isotropic short-range order structures for red hues. This conclusion holds even in the case of advanced scatterer morphologies, such as core-shell particles or inverse photonic glasses-explaining recent experimental findings reporting very poor performances of visual appearance for such systems.
Collapse
Affiliation(s)
- Gianni Jacucci
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Lukas Schertel
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|