1
|
Divoux T, Agoritsas E, Aime S, Barentin C, Barrat JL, Benzi R, Berthier L, Bi D, Biroli G, Bonn D, Bourrianne P, Bouzid M, Del Gado E, Delanoë-Ayari H, Farain K, Fielding S, Fuchs M, van der Gucht J, Henkes S, Jalaal M, Joshi YM, Lemaître A, Leheny RL, Manneville S, Martens K, Poon WCK, Popović M, Procaccia I, Ramos L, Richards JA, Rogers S, Rossi S, Sbragaglia M, Tarjus G, Toschi F, Trappe V, Vermant J, Wyart M, Zamponi F, Zare D. Ductile-to-brittle transition and yielding in soft amorphous materials: perspectives and open questions. SOFT MATTER 2024; 20:6868-6888. [PMID: 39028363 DOI: 10.1039/d3sm01740k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Soft amorphous materials are viscoelastic solids ubiquitously found around us, from clays and cementitious pastes to emulsions and physical gels encountered in food or biomedical engineering. Under an external deformation, these materials undergo a noteworthy transition from a solid to a liquid state that reshapes the material microstructure. This yielding transition was the main theme of a workshop held from January 9 to 13, 2023 at the Lorentz Center in Leiden. The manuscript presented here offers a critical perspective on the subject, synthesizing insights from the various brainstorming sessions and informal discussions that unfolded during this week of vibrant exchange of ideas. The result of these exchanges takes the form of a series of open questions that represent outstanding experimental, numerical, and theoretical challenges to be tackled in the near future.
Collapse
Affiliation(s)
- Thibaut Divoux
- ENSL, CNRS, Laboratoire de physique, F-69342 Lyon, France.
| | - Elisabeth Agoritsas
- Department of Quantum Matter Physics (DQMP), University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Stefano Aime
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, Paris, France
| | - Catherine Barentin
- Univ. de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Jean-Louis Barrat
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Roberto Benzi
- Department of Physics & INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Daniel Bonn
- Soft Matter Group, van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Philippe Bourrianne
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, Paris, France
| | - Mehdi Bouzid
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France
| | - Emanuela Del Gado
- Georgetown University, Department of Physics, Institute for Soft Matter Synthesis and Metrology, Washington, DC, USA
| | - Hélène Delanoë-Ayari
- Univ. de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Kasra Farain
- Soft Matter Group, van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Suzanne Fielding
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Silke Henkes
- Lorentz Institute, Leiden University, 2300 RA Leiden, The Netherlands
| | - Maziyar Jalaal
- Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Yogesh M Joshi
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Anaël Lemaître
- Navier, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | - Wilson C K Poon
- SUPA and the School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str.38, 01187 Dresden, Germany
| | - Itamar Procaccia
- Dept. of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
- Sino-Europe Complex Science Center, School of Mathematics, North University of China, Shanxi, Taiyuan 030051, China
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - James A Richards
- SUPA and the School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Simon Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Saverio Rossi
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Mauro Sbragaglia
- Department of Physics & INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Federico Toschi
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- CNR-IAC, Via dei Taurini 19, 00185 Rome, Italy
| | - Véronique Trappe
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg 1700, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zürich, Vladimir Prelog Weg 5, 8032 Zürich, Switzerland
| | - Matthieu Wyart
- Department of Quantum Matter Physics (DQMP), University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Francesco Zamponi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Davoud Zare
- Fonterra Research and Development Centre, Dairy Farm Road, Fitzherbert, Palmerston North 4442, New Zealand
- Nestlé Institute of Food Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland
| |
Collapse
|
2
|
Xiao H, Zhang G, Yang E, Ivancic R, Ridout S, Riggleman R, Durian DJ, Liu AJ. Identifying microscopic factors that influence ductility in disordered solids. Proc Natl Acad Sci U S A 2023; 120:e2307552120. [PMID: 37812709 PMCID: PMC10589640 DOI: 10.1073/pnas.2307552120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/16/2023] [Indexed: 10/11/2023] Open
Abstract
There are empirical strategies for tuning the degree of strain localization in disordered solids, but they are system-specific and no theoretical framework explains their effectiveness or limitations. Here, we study three model disordered solids: a simulated atomic glass, an experimental granular packing, and a simulated polymer glass. We tune each system using a different strategy to exhibit two different degrees of strain localization. In tandem, we construct structuro-elastoplastic (StEP) models, which reduce descriptions of the systems to a few microscopic features that control strain localization, using a machine learning-based descriptor, softness, to represent the stability of the disordered local structure. The models are based on calculated correlations of softness and rearrangements. Without additional parameters, the models exhibit semiquantitative agreement with observed stress-strain curves and softness statistics for all systems studied. Moreover, the StEP models reveal that initial structure, the near-field effect of rearrangements on local structure, and rearrangement size, respectively, are responsible for the changes in ductility observed in the three systems. Thus, StEP models provide microscopic understanding of how strain localization depends on the interplay of structure, plasticity, and elasticity.
Collapse
Affiliation(s)
- Hongyi Xiao
- Department of Physics, University of Pennsylvania, Philadelphia, PA19104
- Chemical and Biological Engineering, Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen91058, Germany
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Ge Zhang
- Department of Physics, University of Pennsylvania, Philadelphia, PA19104
- Department of Physics, City University of Hong Kong, Hong Kong999077, China
| | - Entao Yang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Robert Ivancic
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD20899
| | - Sean Ridout
- Department of Physics, University of Pennsylvania, Philadelphia, PA19104
- Department of Physics, Emory University, Atlanta, GA30322
| | - Robert Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Douglas J. Durian
- Department of Physics, University of Pennsylvania, Philadelphia, PA19104
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY10010
| | - Andrea J. Liu
- Department of Physics, University of Pennsylvania, Philadelphia, PA19104
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY10010
| |
Collapse
|
3
|
Tripathy M, Srivastava A, Sastry S, Rao M. Protein as evolvable functionally constrained amorphous matter. J Biosci 2022. [DOI: 10.1007/s12038-022-00313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Rossi S, Biroli G, Ozawa M, Tarjus G, Zamponi F. Finite-Disorder Critical Point in the Yielding Transition of Elastoplastic Models. PHYSICAL REVIEW LETTERS 2022; 129:228002. [PMID: 36493446 DOI: 10.1103/physrevlett.129.228002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Upon loading, amorphous solids can exhibit brittle yielding, with the abrupt formation of macroscopic shear bands leading to fracture, or ductile yielding, with a multitude of plastic events leading to homogeneous flow. It has been recently proposed, and subsequently questioned, that the two regimes are separated by a sharp critical point, as a function of some control parameter characterizing the intrinsic disorder strength and the degree of stability of the solid. In order to resolve this issue, we have performed extensive numerical simulations of athermally driven elastoplastic models with long-range and anisotropic realistic interaction kernels in two and three dimensions. Our results provide clear evidence for a finite-disorder critical point separating brittle and ductile yielding, and we provide an estimate of the critical exponents in 2D and 3D.
Collapse
Affiliation(s)
- Saverio Rossi
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - Misaki Ozawa
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Francesco Zamponi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| |
Collapse
|
5
|
Lerbinger M, Barbot A, Vandembroucq D, Patinet S. Relevance of Shear Transformations in the Relaxation of Supercooled Liquids. PHYSICAL REVIEW LETTERS 2022; 129:195501. [PMID: 36399740 DOI: 10.1103/physrevlett.129.195501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 07/18/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
While deeply supercooled liquids exhibit divergent viscosity and increasingly heterogeneous dynamics as the temperature drops, their structure shows only seemingly marginal changes. Understanding the nature of relaxation processes in this dramatic slowdown is key for understanding the glass transition. Here, we show by atomistic simulations that the heterogeneous dynamics of glass-forming liquids strongly correlate with the local residual plastic strengths along soft directions computed in the initial inherent structures. The correlation increases with decreasing temperature and is maximum in the vicinity of the relaxation time. For the lowest temperature investigated, this maximum is comparable with the best values from the literature dealing with the structure-property relationship. However, the nonlinear probe of the local shear resistance in soft directions provides here a real-space picture of relaxation processes. Our detection method of thermal rearrangements allows us to investigate the first passage time statistics and to study the scaling between the activation energy barriers and the residual plastic strengths. These results shed new light on the nature of relaxations of glassy systems by emphasizing the analogy between the thermal relaxations in viscous liquids and the plastic shear transformation in amorphous solids.
Collapse
Affiliation(s)
- Matthias Lerbinger
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Armand Barbot
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Damien Vandembroucq
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Sylvain Patinet
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| |
Collapse
|
6
|
Vasisht VV, Chaudhuri P, Martens K. Residual stress in athermal soft disordered solids: insights from microscopic and mesoscale models. SOFT MATTER 2022; 18:6426-6436. [PMID: 35980086 DOI: 10.1039/d2sm00615d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In soft amorphous materials, shear cessation after large shear deformation leads to configurations having residual shear stress. The origin of these states and the distribution of the local shear stresses within the material is not well understood, despite its importance for the change in material properties and consequent applications. In this work, we use molecular dynamics simulations of a model dense non-Brownian soft amorphous material to probe the non-trivial relaxation process towards a residual stress state. We find that, similar to thermal glasses, an increase in shear rate prior to the shear cessation leads to lower residual stress states. We rationalise our findings using a mesoscopic elasto-plastic description that explicitly includes a long range elastic response to local shear transformations. We find that after flow cessation the initial stress relaxation indeed depends on the pre-sheared stress state, but the final residual stress is majorly determined by newly activated plastic events occurring during the relaxation process, a scenario consistent with the phenomenology of avalanche dynamics in the low shear rate limit of steadily sheared amorphous solids. Our simplified coarse grained description not only allows capturing the phenomenology of residual stress states but also rationalising the altered material properties that are probed using small and large deformation protocols applied to the relaxed material.
Collapse
Affiliation(s)
- Vishwas V Vasisht
- Department of Physics, Indian Institute of Technology, Palakkad 678557, India.
| | | | - Kirsten Martens
- The Institute of Mathematical Sciences, Taramani, Chennai 600113, India
| |
Collapse
|
7
|
Bhaumik H, Foffi G, Sastry S. Avalanches, Clusters, and Structural Change in Cyclically Sheared Silica Glass. PHYSICAL REVIEW LETTERS 2022; 128:098001. [PMID: 35302798 DOI: 10.1103/physrevlett.128.098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
We investigate avalanches and clusters associated with plastic rearrangements and the nature of structural change in the prototypical strong glass, silica, computationally. We perform a detailed analysis of avalanches, and of spatially disconnected clusters that constitute them, for a wide range of system sizes. Although qualitative aspects of yielding in silica are similar to other glasses, the statistics of clusters exhibits significant differences, which we associate with differences in local structure. Across the yielding transition, anomalous structural change and densification, associated with a suppression of tetrahedral order, is observed to accompany strain localization.
Collapse
Affiliation(s)
- Himangsu Bhaumik
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| | - Giuseppe Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Srikanth Sastry
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Bengaluru 560064, India
| |
Collapse
|
8
|
Bhaumik H, Foffi G, Sastry S. Yielding transition of a two dimensional glass former under athermal cyclic sheardeformation. J Chem Phys 2022; 156:064502. [DOI: 10.1063/5.0085064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Giuseppe Foffi
- Laboratoire de Physique des Solides, Laboratoire de Physique des Solides, France
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, India
| |
Collapse
|
9
|
Shrivastav GP, Kahl G. On the yielding of a point-defect-rich model crystal under shear: insights from molecular dynamics simulations. SOFT MATTER 2021; 17:8536-8552. [PMID: 34505613 PMCID: PMC8480408 DOI: 10.1039/d1sm00662b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
In real crystals and at finite temperatures point defects are inevitable. Under shear their dynamics severely influence the mechanical properties of these crystals, giving rise to non-linear effects, such as ductility. In an effort to elucidate the complex behavior of crystals under plastic deformation it is crucial to explore and to understand the interplay between the timescale related to the equilibrium point-defect diffusion and the shear-induced timescale. Based on extensive non-equilibrium molecular dynamics simulations we present a detailed investigation on the yielding behavior of cluster crystals, an archetypical model for a defect-rich crystal: in such a system clusters of overlapping particles occupy the lattice sites of a regular (FCC) structure. In equilibrium particles diffuse via site-to-site hopping while maintaining the crystalline structure intact. We investigate these cluster crystals at a fixed density and at different temperatures where the system remains in the FCC structure: temperature allows us to vary the diffusion timescale appropriately. We then expose the crystal to shear, thereby choosing shear rates which cover timescales that are both higher and lower than the equilibrium diffusion timescales. We investigate the macroscopic and microscopic response of our cluster crystal to shear and find that the yielding scenario of such a system does not rely on the diffusion of the particles - it is rather related to the plastic deformation of the underlying crystalline structure. The local bond order parameters and the measurement of local angles between neighboring clusters confirm the cooperative movement of the clusters close to the yield point. Performing complementary, related simulations for an FCC crystal formed by harshly repulsive particles reveals similarities in the yielding behavior between both systems. Still we find that the diffusion of particles does influence characteristic features in the cluster crystal, such as a less prominent increase of order parameters close to the yield point. Our simulations provide for the first time an insight into the role of the diffusion of defects in the yielding behavior of a defect-rich crystal under shear. These observations will thus be helpful in the development of theories for the plastic deformation of defect-rich crystals.
Collapse
Affiliation(s)
- Gaurav P Shrivastav
- Institut für Theoretische Physik and Center for Computational Materials Science (CMS), TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
| | - Gerhard Kahl
- Institut für Theoretische Physik and Center for Computational Materials Science (CMS), TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
| |
Collapse
|
10
|
Chacko RN, Landes FP, Biroli G, Dauchot O, Liu AJ, Reichman DR. Elastoplasticity Mediates Dynamical Heterogeneity Below the Mode Coupling Temperature. PHYSICAL REVIEW LETTERS 2021; 127:048002. [PMID: 34355934 DOI: 10.1103/physrevlett.127.048002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 05/23/2023]
Abstract
As liquids approach the glass transition temperature, dynamical heterogeneity emerges as a crucial universal feature of their behavior. Dynamic facilitation, where local motion triggers further motion nearby, plays a major role in this phenomenon. Here we show that long-ranged, elastically mediated facilitation appears below the mode coupling temperature, adding to the short-range component present at all temperatures. Our results suggest deep connections between the supercooled liquid and glass states, and pave the way for a deeper understanding of dynamical heterogeneity in glassy systems.
Collapse
Affiliation(s)
- Rahul N Chacko
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - François P Landes
- Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, Orsay 91400, France
| | - Giulio Biroli
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris F-75005 Paris, France
| | - Olivier Dauchot
- UMR Gulliver 7083 CNRS, ESPCI, PSL Research University, 10 rue Vauquelin, Paris 75005, France
| | - Andrea J Liu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
11
|
Bhaumik H, Foffi G, Sastry S. The role of annealing in determining the yielding behavior of glasses under cyclic shear deformation. Proc Natl Acad Sci U S A 2021; 118:e2100227118. [PMID: 33850022 PMCID: PMC8072236 DOI: 10.1073/pnas.2100227118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yielding behavior in amorphous solids has been investigated in computer simulations using uniform and cyclic shear deformation. Recent results characterize yielding as a discontinuous transition, with the degree of annealing of glasses being a significant parameter. Under uniform shear, discontinuous changes in stresses at yielding occur in the high annealing regime, separated from the poor annealing regime in which yielding is gradual. In cyclic shear simulations, relatively poorly annealed glasses become progressively better annealed as the yielding point is approached, with a relatively modest but clear discontinuous change at yielding. To understand better the role of annealing on yielding characteristics, we perform athermal quasistatic cyclic shear simulations of glasses prepared with a wide range of annealing in two qualitatively different systems-a model of silica (a network glass) and an atomic binary mixture glass. Two strikingly different regimes of behavior emerge. Energies of poorly annealed samples evolve toward a unique threshold energy as the strain amplitude increases, before yielding takes place. Well-annealed samples, in contrast, show no significant energy change with strain amplitude until they yield, accompanied by discontinuous energy changes that increase with the degree of annealing. Significantly, the threshold energy for both systems corresponds to dynamical cross-over temperatures associated with changes in the character of the energy landscape sampled by glass-forming liquids.
Collapse
Affiliation(s)
- Himangsu Bhaumik
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Giuseppe Foffi
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India;
| |
Collapse
|
12
|
Liu C, Dutta S, Chaudhuri P, Martens K. Elastoplastic Approach Based on Microscopic Insights for the Steady State and Transient Dynamics of Sheared Disordered Solids. PHYSICAL REVIEW LETTERS 2021; 126:138005. [PMID: 33861121 DOI: 10.1103/physrevlett.126.138005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
We develop a framework to study the mechanical response of athermal amorphous solids via a coupling of mesoscale and microscopic models. Using measurements of coarse-grained quantities from simulations of dense disordered particulate systems, we present a coherent elastoplastic model approach for deformation and flow of yield stress materials. For a given set of parameters, this model allows us to match consistently transient and steady state features of driven disordered systems with diverse preparation histories under both applied shear-rate and creep protocols.
Collapse
Affiliation(s)
- Chen Liu
- Laboratoire de Physique de l'Ecole Normale Suprieure, 75005 Paris, France
| | - Suman Dutta
- The Institute of Mathematical Sciences, Taramani, Chennai 600113, India
| | - Pinaki Chaudhuri
- The Institute of Mathematical Sciences, Taramani, Chennai 600113, India
| | | |
Collapse
|
13
|
Ruscher C, Rottler J. Residual stress distributions in amorphous solids from atomistic simulations. SOFT MATTER 2020; 16:8940-8949. [PMID: 32901650 DOI: 10.1039/d0sm01155j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The distribution of local residual stresses (threshold to instability) that controls the statistical properties of plastic flow in athermal amorphous solids is examined with an atomistic simulation technique. For quiescent configurations, the distribution has a pseudogap (power-law) form with an exponent that agrees well with global yielding statistics. As soon as deformation sets in, the pseudogap region gives way to a system size dependent plateau at small residual stresses that can be understood from the statistics of local residual stress differences between plastic events. Results further suggest that the local yield stress in amorphous solids changes even if the given region does not participate in plastic activity.
Collapse
Affiliation(s)
- Céline Ruscher
- Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France. and Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | - Jörg Rottler
- Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
14
|
Lerner E. Finite-size effects in the nonphononic density of states in computer glasses. Phys Rev E 2020; 101:032120. [PMID: 32289945 DOI: 10.1103/physreve.101.032120] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
The universal form of the density of nonphononic, quasilocalized vibrational modes of frequency ω in structural glasses, D(ω), was predicted theoretically decades ago, but only recently revealed in numerical simulations. In particular, it has been recently established that, in generic computer glasses, D(ω) increases from zero frequency as ω^{4}, independent of spatial dimension and of microscopic details. However, it has been shown [Lerner and Bouchbinder, Phys. Rev. E 96, 020104(R) (2017)2470-004510.1103/PhysRevE.96.020104] that the preparation protocol employed to create glassy samples may affect the form of their resulting D(ω): glassy samples rapidly quenched from high-temperature liquid states were shown to feature D(ω)∼ω^{β} with β<4, presumably limiting the degree of universality of the ω^{4} law. Here we show that exponents β<4 are seen only in small glassy samples quenched from high-temperature liquid states-whose sizes are comparable to or smaller than the size of the disordered core of soft quasilocalized vibrations-while larger glassy samples made with the same protocol feature the universal ω^{4} law. Our results demonstrate that observations of β<4 in the nonphononic density of states stem from finite-size effects, and we thus conclude that the ω^{4} law should be featured by any sufficiently large glass quenched from a melt.
Collapse
Affiliation(s)
- Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, the Netherlands
| |
Collapse
|