1
|
Chatterjee S, Nag Chowdhury S. How combined pairwise and higher-order interactions shape transient dynamics. CHAOS (WOODBURY, N.Y.) 2024; 34:101102. [PMID: 39413260 DOI: 10.1063/5.0238827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/18/2024]
Abstract
Understanding how species interactions shape biodiversity is a core challenge in ecology. While much focus has been on long-term stability, there is rising interest in transient dynamics-the short-lived periods when ecosystems respond to disturbances and adjust toward stability. These transitions are crucial for predicting ecosystem reactions and guiding effective conservation. Our study introduces a model that uses convex combinations to blend pairwise and higher-order interactions (HOIs), offering a more realistic view of natural ecosystems. We find that pairwise interactions slow the journey to stability, while HOIs speed it up. Employing global stability analysis and numerical simulations, we establish that as the proportion of HOIs increases, mean transient times exhibit a significant reduction, thereby underscoring the essential role of HOIs in enhancing biodiversity stabilization. Our results reveal a robust correlation between the most negative real part of the eigenvalues of the Jacobian matrix associated with the linearized system at the coexistence equilibrium and the mean transient times. This indicates that a more negative leading eigenvalue correlates with accelerated convergence to stable coexistence abundances. This insight is vital for comprehending ecosystem resilience and recovery, emphasizing the key role of HOIs in promoting stabilization. Amid growing interest in transient dynamics and its implications for biodiversity and ecological stability, our study enhances the understanding of how species interactions affect both transient and long-term ecosystem behavior. By addressing a critical gap in ecological theory and offering a practical framework for ecosystem management, our work advances knowledge of transient dynamics, ultimately informing effective conservation strategies.
Collapse
Affiliation(s)
- Sourin Chatterjee
- Department of Mathematics and Statistics, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
- Institut de Neurosciences des Systèmes (INS), UMR1106, Aix-Marseille Université, Marseilles, France
| | - Sayantan Nag Chowdhury
- School of Science, Constructor University, 28759 Bremen, Germany
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
- Department of Environmental Science and Policy, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
2
|
Lu Y, Wang X, Du C, Wang Y, Geng Y, Shi L, Park J. Understanding the role of neutral species by means of high-order interaction in the rock-paper-scissors dynamics. Phys Rev E 2024; 109:014313. [PMID: 38366519 DOI: 10.1103/physreve.109.014313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
The existence of neutral species carries profound ecological implications that warrant further investigation. In this paper, we study the impact of neutral species on biodiversity in a spatial tritrophic system of cyclic competition, in which the neutral species are identified as the fourth species that may affect the competition process of the other three species under the rock-paper-scissors (RPS) rule. Extensive simulations showed that neutral species can promote coexistence in a high mobility regime within the system. When coexistence occurs, we found that the state can be maintained by two mechanisms: Species can either (i) adhere to traditional RPS rule or (ii) form patches to resist invasion. Our findings might aid in understanding the impact of neutral species on biodiversity in ecosystems.
Collapse
Affiliation(s)
- Yikang Lu
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018 Zaragoza, Spain
| | - Xiaoyue Wang
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
| | - Chunpeng Du
- School of Mathematics, Kunming University, Kunming, 650214, China
| | - Yanan Wang
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018 Zaragoza, Spain
- School of Economics and Management, Beihang University, Beijing 100191, China
| | - Yini Geng
- School of Mathematics and Statistics, Hunan Normal University, Changsha 410081, China
| | - Lei Shi
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
- Interdisciplinary Research Institute of Data Science, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China
| | - Junpyo Park
- Department of Applied Mathematics, College of Applied Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
3
|
Chatterjee S, De R, Hens C, Dana SK, Kapitaniak T, Bhattacharyya S. Response of a three-species cyclic ecosystem to a short-lived elevation of death rate. Sci Rep 2023; 13:20740. [PMID: 38007582 PMCID: PMC10676407 DOI: 10.1038/s41598-023-48104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
A balanced ecosystem with coexisting constituent species is often perturbed by different natural events that persist only for a finite duration of time. What becomes important is whether, in the aftermath, the ecosystem recovers its balance or not. Here we study the fate of an ecosystem by monitoring the dynamics of a particular species that encounters a sudden increase in death rate. For exploration of the fate of the species, we use Monte-Carlo simulation on a three-species cyclic rock-paper-scissor model. The density of the affected (by perturbation) species is found to drop exponentially immediately after the pulse is applied. In spite of showing this exponential decay as a short-time behavior, there exists a region in parameter space where this species surprisingly remains as a single survivor, wiping out the other two which had not been directly affected by the perturbation. Numerical simulations using stochastic differential equations of the species give consistency to our results.
Collapse
Affiliation(s)
- Sourin Chatterjee
- Department of Mathematics and Statistics, Indian Institute of Science Education and Research, Kolkata, West Bengal, 741246, India
| | - Rina De
- Department of Physics, Raja Rammohun Roy Mahavidyalaya, Radhanagar, Hooghly, 712406, India
| | - Chittaranjan Hens
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, 500 032, India
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
| | - Syamal K Dana
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, 700032, India
| | - Tomasz Kapitaniak
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
| | | |
Collapse
|
4
|
Chatterjee S, Nag Chowdhury S, Ghosh D, Hens C. Controlling species densities in structurally perturbed intransitive cycles with higher-order interactions. CHAOS (WOODBURY, N.Y.) 2022; 32:103122. [PMID: 36319275 DOI: 10.1063/5.0102599] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The persistence of biodiversity of species is a challenging proposition in ecological communities in the face of Darwinian selection. The present article investigates beyond the pairwise competitive interactions and provides a novel perspective for understanding the influence of higher-order interactions on the evolution of social phenotypes. Our simple model yields a prosperous outlook to demonstrate the impact of perturbations on intransitive competitive higher-order interactions. Using a mathematical technique, we show how alone the perturbed interaction network can quickly determine the coexistence equilibrium of competing species instead of solving a large system of ordinary differential equations. It is possible to split the system into multiple feasible cluster states depending on the number of perturbations. Our analysis also reveals that the ratio between the unperturbed and perturbed species is inversely proportional to the amount of employed perturbation. Our results suggest that nonlinear dynamical systems and interaction topologies can be interplayed to comprehend species' coexistence under adverse conditions. Particularly, our findings signify that less competition between two species increases their abundance and outperforms others.
Collapse
Affiliation(s)
- Sourin Chatterjee
- Department of Mathematics and Statistics, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
| | - Sayantan Nag Chowdhury
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
5
|
Islam S, Mondal A, Mobilia M, Bhattacharyya S, Hens C. Effect of mobility in the rock-paper-scissor dynamics with high mortality. Phys Rev E 2022; 105:014215. [PMID: 35193192 DOI: 10.1103/physreve.105.014215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In the evolutionary dynamics of a rock-paper-scissor model, the effect of natural death plays a major role in determining the fate of the system. Coexistence, being an unstable fixed point of the model, becomes very sensitive toward this parameter. In order to study the effect of mobility in such a system which has explicit dependence on mortality, we perform Monte Carlo simulation on a two-dimensional lattice having three cyclically competing species. The spatiotemporal dynamics has been studied along with the two-site correlation function. Spatial distribution exhibits emergence of spiral patterns in the presence of mobility. It reveals that the joint effect of death rate and mobility (diffusion) leads to new coexistence and extinction scenarios.
Collapse
Affiliation(s)
- Sahil Islam
- Department of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Argha Mondal
- Department of Mathematics, Sidho-Kanho-Birsha University, Purulia 723104, WB, India
- Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|