1
|
Xu X, Lu Y, Wang S, Xu J, Zheng Z. Collective dynamics of swarmalators driven by a mobile pacemaker. CHAOS (WOODBURY, N.Y.) 2024; 34:113103. [PMID: 39485133 DOI: 10.1063/5.0223152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Swarmalators, namely, oscillators with intrinsic frequencies that are able to self-propel to move in space, may undergo collective spatial swarming and meanwhile phase synchronous dynamics. In this paper, a swarmalator model driven by an external mobile pacemaker is proposed to explore the swarming dynamics in the presence of the competition between the external organization of the moving pacemaker and the intrinsic self-organization among oscillators. It is unveiled that the swarmalator system may exhibit a wealth of novel spatiotemporal patterns including the spindle state, the ripple state, and the trapping state. Transitions among these patterns and the mechanisms are studied with the help of different order parameters. The phase diagrams present systematic scenarios of various possible collective swarming dynamics and the transitions among them. The present study indicates that one may manipulate the formation and switching of the organized collective states by adjusting the external driving force, which is expected to shed light on applications of swarming performance control in natural and artificial groups of active agents.
Collapse
Affiliation(s)
- Xiaoxin Xu
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China
- College of Information Science and Technology, Huaqiao University, Xiamen 361021, China
| | - Yichen Lu
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China
- School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
| | - Simin Wang
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China
- College of Information Science and Technology, Huaqiao University, Xiamen 361021, China
| | - Jie Xu
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China
- College of Information Science and Technology, Huaqiao University, Xiamen 361021, China
| | - Zhigang Zheng
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China
- College of Information Science and Technology, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
2
|
Anwar MS, Ghosh D, O'Keeffe K. Forced one-dimensional swarmalator model. Phys Rev E 2024; 110:054205. [PMID: 39690611 DOI: 10.1103/physreve.110.054205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 12/19/2024]
Abstract
We study a simple model of swarmalators subject to periodic forcing and confined to moving around a one-dimensional ring. This is a toy model for physical systems with a mix of sync, swarming, and forcing, such as colloidal micromotors. We find rich behavior: pinned states where the swarmalators are locked to the driving, sync states where their phases are either identical or have fixed differences, and unsteady states, such as swarmalator chimera where the population splits into two sync dots enclosed by a "train" of swarmalators that run around a peanut-shaped loop. We derive the stability thresholds for most of these states which give us a good approximation of the model's phase diagram.
Collapse
|
3
|
Lizárraga JUF, O'Keeffe KP, de Aguiar MAM. Order, chaos, and dimensionality transition in a system of swarmalators. Phys Rev E 2024; 109:044209. [PMID: 38755840 DOI: 10.1103/physreve.109.044209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/20/2024] [Indexed: 05/18/2024]
Abstract
Similarly to sperm, where individuals self-organize in space while also striving for coherence in their tail swinging, several natural and engineered systems exhibit the emergence of swarming and synchronization. The arising and interplay of these phenomena have been captured by collectives of hypothetical particles named swarmalators, each possessing a position and a phase whose dynamics are affected reciprocally and also by the space-phase states of their neighbors. In this work, we introduce a solvable model of swarmalators able to move in two-dimensional spaces. We show that several static and active collective states can emerge and derive necessary conditions for each to show up as the model parameters are varied. These conditions elucidate, in some cases, the displaying of multistability among states. Notably, in the active regime, the system exhibits hyperchaos, maintaining spatial correlation under certain conditions and breaking it under others on what we interpret as a dimensionality transition.
Collapse
Affiliation(s)
- Joao U F Lizárraga
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Unicamp 13083-970, Campinas, São Paulo, Brazil
| | - Kevin P O'Keeffe
- Senseable City Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Marcus A M de Aguiar
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Unicamp 13083-970, Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Kryuchkov NP, Nasyrov AD, Gursky KD, Yurchenko SO. Influence of anomalous agents on the dynamics of an active system. Phys Rev E 2024; 109:034601. [PMID: 38632726 DOI: 10.1103/physreve.109.034601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/25/2024] [Indexed: 04/19/2024]
Abstract
Swarming behavior in systems of self-propelled particles, whether biological or artificial, has received increased attention in recent years. Here, we show that even a small number of particles with anomalous behavior can change dramatically collective dynamics of the swarming system and can impose unusual behavior and transitions between dynamic states. Our results pave the way to practical approaches and concepts of multiagent dynamics in groups of flocking animals: birds, insects, and fish, i.e., active and living soft matter.
Collapse
Affiliation(s)
- Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Artur D Nasyrov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Konstantin D Gursky
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| |
Collapse
|
5
|
Zheng Z, Xu C, Fan J, Liu M, Chen X. Order parameter dynamics in complex systems: From models to data. CHAOS (WOODBURY, N.Y.) 2024; 34:022101. [PMID: 38341762 DOI: 10.1063/5.0180340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/14/2023] [Indexed: 02/13/2024]
Abstract
Collective ordering behaviors are typical macroscopic manifestations embedded in complex systems and can be ubiquitously observed across various physical backgrounds. Elements in complex systems may self-organize via mutual or external couplings to achieve diverse spatiotemporal coordinations. The order parameter, as a powerful quantity in describing the transition to collective states, may emerge spontaneously from large numbers of degrees of freedom through competitions. In this minireview, we extensively discussed the collective dynamics of complex systems from the viewpoint of order-parameter dynamics. A synergetic theory is adopted as the foundation of order-parameter dynamics, and it focuses on the self-organization and collective behaviors of complex systems. At the onset of macroscopic transitions, slow modes are distinguished from fast modes and act as order parameters, whose evolution can be established in terms of the slaving principle. We explore order-parameter dynamics in both model-based and data-based scenarios. For situations where microscopic dynamics modeling is available, as prototype examples, synchronization of coupled phase oscillators, chimera states, and neuron network dynamics are analytically studied, and the order-parameter dynamics is constructed in terms of reduction procedures such as the Ott-Antonsen ansatz, the Lorentz ansatz, and so on. For complicated systems highly challenging to be well modeled, we proposed the eigen-microstate approach (EMP) to reconstruct the macroscopic order-parameter dynamics, where the spatiotemporal evolution brought by big data can be well decomposed into eigenmodes, and the macroscopic collective behavior can be traced by Bose-Einstein condensation-like transitions and the emergence of dominant eigenmodes. The EMP is successfully applied to some typical examples, such as phase transitions in the Ising model, climate dynamics in earth systems, fluctuation patterns in stock markets, and collective motion in living systems.
Collapse
Affiliation(s)
- Zhigang Zheng
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Can Xu
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingfang Fan
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Maoxin Liu
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Xiaosong Chen
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Blum N, Li A, O'Keeffe K, Kogan O. Swarmalators with delayed interactions. Phys Rev E 2024; 109:014205. [PMID: 38366397 DOI: 10.1103/physreve.109.014205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/15/2023] [Indexed: 02/18/2024]
Abstract
We investigate the effects of delayed interactions in a population of "swarmalators," generalizations of phase oscillators that both synchronize in time and swarm through space. We discover two steady collective states: a state in which swarmalators are essentially motionless in a disk arranged in a pseudocrystalline order, and a boiling state in which the swarmalators again form a disk, but now the swarmalators near the boundary perform boiling-like convective motions. These states are reminiscent of the beating clusters seen in photoactivated colloids and the living crystals of starfish embryos.
Collapse
Affiliation(s)
- Nicholas Blum
- California Polytechnic State University, San Luis Obispo, California 93407, USA
| | - Andre Li
- Department of Physics, California State University, East Bay, California 94542, USA
| | - Kevin O'Keeffe
- Senseable City Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Oleg Kogan
- California Polytechnic State University, San Luis Obispo, California 93407, USA
| |
Collapse
|
7
|
Ceron S, O’Keeffe K, Petersen K. Diverse behaviors in non-uniform chiral and non-chiral swarmalators. Nat Commun 2023; 14:940. [PMID: 36806287 PMCID: PMC9941214 DOI: 10.1038/s41467-023-36563-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
We study the emergent behaviors of a population of swarming coupled oscillators, dubbed swarmalators. Previous work considered the simplest, idealized case: identical swarmalators with global coupling. Here we expand this work by adding more realistic features: local coupling, non-identical natural frequencies, and chirality. This more realistic model generates a variety of new behaviors including lattices of vortices, beating clusters, and interacting phase waves. Similar behaviors are found across natural and artificial micro-scale collective systems, including social slime mold, spermatozoa vortex arrays, and Quincke rollers. Our results indicate a wide range of future use cases, both to aid characterization and understanding of natural swarms, and to design complex interactions in collective systems from soft and active matter to micro-robotics.
Collapse
Affiliation(s)
- Steven Ceron
- grid.5386.8000000041936877XSibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 USA ,grid.116068.80000 0001 2341 2786Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Kevin O’Keeffe
- grid.116068.80000 0001 2341 2786Senseable City Lab, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Kirstin Petersen
- Electrical and Computer Engineering, Cornell University, 136 Hoy Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Sar GK, Ghosh D, O'Keeffe K. Pinning in a system of swarmalators. Phys Rev E 2023; 107:024215. [PMID: 36932525 DOI: 10.1103/physreve.107.024215] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/01/2023] [Indexed: 03/19/2023]
Abstract
We study a population of swarmalators (swarming/mobile oscillators) which run on a ring and are subject to random pinning. The pinning represents the tendency of particles to stick to defects in the underlying medium which competes with the tendency to sync and swarm. The result is rich collective behavior. A highlight is low dimensional chaos which in systems of ordinary, Kuramoto-type oscillators is uncommon. Some of the states (the phase wave and split phase wave) resemble those seen in systems of Janus matchsticks or Japanese tree frogs. The others (such as the sync and unsteady states) may be observable in systems of vinegar eels, electrorotated Quincke rollers, or other swarmalators moving in disordered environments.
Collapse
Affiliation(s)
- Gourab Kumar Sar
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Kevin O'Keeffe
- Senseable City Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
9
|
O'Keeffe K, Ceron S, Petersen K. Collective behavior of swarmalators on a ring. Phys Rev E 2022; 105:014211. [PMID: 35193221 DOI: 10.1103/physreve.105.014211] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
We study the collective behavior of swarmalators, generalizations of phase oscillators that both sync and swarm, confined to move on a one-dimensional (1D) ring. This simple model captures the essence of movement in two or three dimensions, but has the benefit of being solvable: most of the collective states and their bifurcations can be specified exactly. The model also captures the behavior of real-world swarmalators which swarm in quasi-1D rings such as bordertaxic vinegar eels and sperm.
Collapse
Affiliation(s)
- Kevin O'Keeffe
- Senseable City Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Steven Ceron
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Kirstin Petersen
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
10
|
Hong H, Yeo K, Lee HK. Coupling disorder in a population of swarmalators. Phys Rev E 2021; 104:044214. [PMID: 34781534 DOI: 10.1103/physreve.104.044214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/14/2021] [Indexed: 11/07/2022]
Abstract
We consider a population of two-dimensional oscillators with random couplings and explore the collective states. The coupling strength between oscillators is randomly quenched with two values, one of which is positive while the other is negative, and the oscillators can spatially move depending on the state variables for phase and position. We find that the system shows the phase transition from the incoherent state to the fully synchronized one at a proper ratio of the number of positive couplings to the total. The threshold is numerically measured and analytically predicted by the linear stability analysis of the fully synchronized state. It is found that the random couplings induce the long-term state patterns appearing for constant strength. The oscillators move to the places where the randomly quenched couplings work as if annealed. We further observe that the system with mixed randomnesses for quenched couplings shows the combination of the deformed patterns understandable with each annealed average.
Collapse
Affiliation(s)
- Hyunsuk Hong
- Department of Physics, Jeonbuk National University, Jeonju 54896, Korea.,Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Kangmo Yeo
- Department of Physics, Jeonbuk National University, Jeonju 54896, Korea
| | - Hyun Keun Lee
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
11
|
Bongard J, Levin M. Living Things Are Not (20th Century) Machines: Updating Mechanism Metaphors in Light of the Modern Science of Machine Behavior. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.650726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the most useful metaphors for driving scientific and engineering progress has been that of the “machine.” Much controversy exists about the applicability of this concept in the life sciences. Advances in molecular biology have revealed numerous design principles that can be harnessed to understand cells from an engineering perspective, and build novel devices to rationally exploit the laws of chemistry, physics, and computation. At the same time, organicists point to the many unique features of life, especially at larger scales of organization, which have resisted decomposition analysis and artificial implementation. Here, we argue that much of this debate has focused on inessential aspects of machines – classical properties which have been surpassed by advances in modern Machine Behavior and no longer apply. This emerging multidisciplinary field, at the interface of artificial life, machine learning, and synthetic bioengineering, is highlighting the inadequacy of existing definitions. Key terms such as machine, robot, program, software, evolved, designed, etc., need to be revised in light of technological and theoretical advances that have moved past the dated philosophical conceptions that have limited our understanding of both evolved and designed systems. Moving beyond contingent aspects of historical and current machines will enable conceptual tools that embrace inevitable advances in synthetic and hybrid bioengineering and computer science, toward a framework that identifies essential distinctions between fundamental concepts of devices and living agents. Progress in both theory and practical applications requires the establishment of a novel conception of “machines as they could be,” based on the profound lessons of biology at all scales. We sketch a perspective that acknowledges the remarkable, unique aspects of life to help re-define key terms, and identify deep, essential features of concepts for a future in which sharp boundaries between evolved and designed systems will not exist.
Collapse
|
12
|
Lee HK, Yeo K, Hong H. Collective steady-state patterns of swarmalators with finite-cutoff interaction distance. CHAOS (WOODBURY, N.Y.) 2021; 31:033134. [PMID: 33810730 DOI: 10.1063/5.0038591] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
We study the steady-state patterns of population of the coupled oscillators that sync and swarm, where the interaction distances among the oscillators have a finite-cutoff in the interaction distance. We examine how the static patterns known in the infinite-cutoff are reproduced or deformed and explore a new static pattern that does not appear until a finite-cutoff is considered. All steady-state patterns of the infinite-cutoff, static sync, static async, and static phase wave are repeated in space for proper finite-cutoff ranges. Their deformation in shape and density takes place for the other finite-cutoff ranges. Bar-like phase wave states are observed, which has not been the case for the infinite-cutoff. All the patterns are investigated via numerical and theoretical analyses.
Collapse
Affiliation(s)
- Hyun Keun Lee
- Department of Physics, Sungkyunkwan University, Suwon 16419, South Korea
| | - Kangmo Yeo
- Department of Physics, Jeonbuk National University, Jeonju 54896, South Korea
| | - Hyunsuk Hong
- Department of Physics, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|