1
|
Elsässer P, Schilling T. Structural transition in the single layer growth of diindenoperylene on silica. J Chem Phys 2024; 161:094903. [PMID: 39225527 DOI: 10.1063/5.0222049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
When forming a film on a substrate, rod shaped organic molecules can order in lying-down or standing-up phases. We have studied the growth of diindenoperylene films on amorphous silicon dioxide by means of molecular dynamics simulations and analyzed the film structure. The vapor deposition process was emulated by depositing single molecules at a fixed rate on the substrate. At 400 K, we observed a transition from disordered lying-down to standing-up molecules, which agrees well with experimental observations. This transition, which depends sensitively on the kinetic parameters, requires both a sufficiently high thermal energy to overcome the energy barrier and a sufficiently large cluster size. Our results indicate that a higher degree of initial disorder in the lying-down phase results in a larger probability for the system to undergo the transition to the standing-up phase.
Collapse
Affiliation(s)
- Philipp Elsässer
- Institute of Physics, University of Freiburg, 79104, Freiburg (Breisgau), Germany
| | - Tanja Schilling
- Institute of Physics, University of Freiburg, 79104, Freiburg (Breisgau), Germany
| |
Collapse
|
2
|
Carrasco ISS, To TBT, Reis FDAA. Scaling of surface roughness in film deposition with height-dependent step edge barriers. Phys Rev E 2023; 108:064802. [PMID: 38243503 DOI: 10.1103/physreve.108.064802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/10/2023] [Indexed: 01/21/2024]
Abstract
We perform kinetic Monte Carlo simulations of film growth in simple cubic lattices with solid-on-solid conditions, Ehrlich-Schwoebel (ES) barriers at step edges, and a kinetic barrier related to the hidden off-plane diffusion at multilayer steps. Broad ranges of the diffusion-to-deposition ratio R, detachment probability per lateral neighbor, ε, and monolayer step crossing probability P=exp[-E_{ES}/(k_{B}T)] are studied. Without the ES barrier, four possible scaling regimes are shown as the coverage θ increases: nearly layer-by-layer growth with damped roughness oscillations; kinetic roughening in the Villain-Lai-Das Sarma (VLDS) universality class when the roughness is W∼1 (in lattice units); unstable roughening with mound nucleation and growth, where slopes of logW×logθ plots reach values larger than 0.5; and asymptotic statistical growth with W=θ^{1/2} solely due to the kinetic barrier at multilayer steps. If the ES barrier is present, the layer-by-layer growth crosses over directly to the unstable regime, with no transient VLDS scaling. However, in simulations up to θ=10^{4} (typical of films with a few micrometers), low temperatures (small R, ε, or P) may suppress the two or three initial regimes, while high temperatures and P∼1 produce smooth surfaces at all thicknesses. These crossovers help to explain proposals of nonuniversal exponents in previous works. We define a smooth film thickness θ_{c} where W=1 and show that VLDS scaling at that point indicates negligible ES barriers, while rapidly increasing roughness indicates a small ES barrier (E_{ES}∼k_{B}T). θ_{c} scales as ∼exp(const×P^{2/3}) if the other parameters are kept fixed, which represents a high sensitivity on the ES barrier. The analysis of recent experimental data in the light of our results distinguishes cases where E_{ES}/(k_{B}T) is negligible, ∼1, or ≪1.
Collapse
Affiliation(s)
- Ismael S S Carrasco
- International Center of Physics, Institute of Physics, University of Brasilia, 70910-900 Brasilia, Federal District, Brazil
| | - Tung B T To
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói, Rio de Janeiro, Brazil
| | - Fábio D A Aarão Reis
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Picard JAKL, Speck T. Inverse condensation of adsorbed molecules with two conformations. J Chem Phys 2023; 158:034701. [PMID: 36681634 DOI: 10.1063/5.0133965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Conventional gas-liquid phase transitions feature a coexistence line that has a monotonic and positive slope in line with our intuition that cooling always leads to condensation. Here, we study the inverse phenomenon, condensation of adsorbed organic molecules into dense domains upon heating. Our considerations are motivated by recent experiments [Aeschlimann et al., Angew. Chem., Int. Ed. 60, 19117-19122 (2021)], which demonstrate the partial dissolution of an ordered molecular monolayer and the mobilization of molecules upon cooling. We introduce a simple lattice model in which each site can have three states corresponding to unoccupied and two discernible molecular conformations. We investigate this model through Monte Carlo simulations, mean-field theory, and exact results based on the analytical solution of the Ising model in two dimensions. Our results should be broadly applicable to molecules with distinct conformations that have sufficiently different entropies or heat capacities.
Collapse
Affiliation(s)
- Joël A K L Picard
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institute for Theoretical Physics IV, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Dull JT, Chen X, Johnson HM, Otani MC, Schreiber F, Clancy P, Rand BP. A comprehensive picture of roughness evolution in organic crystalline growth: the role of molecular aspect ratio. MATERIALS HORIZONS 2022; 9:2752-2761. [PMID: 36069252 DOI: 10.1039/d2mh00854h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exploiting the capabilities of organic semiconductors for applications ranging from light-emitting diodes to photovoltaics to lasers relies on the creation of ordered, smooth layers for optimal charge carrier mobilities and exciton diffusion. This, in turn, creates a demand for organic small molecules that can form smooth thin film crystals via homoepitaxy. We have studied a set of small-molecule organic semiconductors that serve as templates for homoepitaxy. The surface roughness of these materials is measured as a function of adlayer film thickness from which the growth exponent (β) is extracted. Notably, we find that three-dimensional molecules that have low molecular aspect ratios (AR) tend to remain smooth as thickness increases (small β). This is in contrast to planar or rod-like molecules with high AR that quickly roughen (large β). Molecular dynamics simulations find that the Ehrlich-Schwöbel barrier (EES) alone is unable to fully explain this trend. We further investigated the mobility of ad-molecules on the crystalline surface to categorize their diffusion behaviors and the effects of aggregation to account for the different degrees of roughness that we observed. Our results suggest that low AR molecules have low molecular mobility and moderate EES which creates a downward funneling effect leading to smooth crystal growth.
Collapse
Affiliation(s)
- Jordan T Dull
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Xiangyu Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Holly M Johnson
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Maria Clara Otani
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Frank Schreiber
- Institute for Applied Physics, University of Tubingen, 72076 Tubingen, Germany
| | - Paulette Clancy
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Barry P Rand
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
5
|
Kaspar TC, Hatton P, Yano KH, Taylor SD, Spurgeon SR, Uberuaga BP, Schreiber DK. Adatom-Driven Oxygen Intermixing during the Deposition of Oxide Thin Films by Molecular Beam Epitaxy. NANO LETTERS 2022; 22:4963-4969. [PMID: 35687425 DOI: 10.1021/acs.nanolett.2c01678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thin film deposition from the vapor phase is a complex process involving adatom adsorption, movement, and incorporation into the growing film. Here, we present quantitative experimental data that reveals anion intermixing over long length scales during the deposition of epitaxial Fe2O3 and Cr2O3 films and heterostructures by oxygen-plasma-assisted molecular beam epitaxy. We track this diffusion by incorporating well-defined tracer layers containing 18O and/or 57Fe and measure their redistribution on the nanometer scale with atom probe tomography. Molecular dynamics simulations suggest potential intermixing events, which are then examined via nudged elastic band calculations. We reveal that adatoms on the film surface act to "pull up" subsurface O and Fe. Subsequent ring-like rotation mechanisms involving both adatom and subsurface anions then facilitate their mixing. In addition to film deposition, these intermixing mechanisms may be operant during other surface-mediated processes such as heterogeneous catalysis and corrosion.
Collapse
Affiliation(s)
- Tiffany C Kaspar
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Peter Hatton
- Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kayla H Yano
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sandra D Taylor
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Steven R Spurgeon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Blas P Uberuaga
- Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Daniel K Schreiber
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
6
|
Abstract
Kinetic Monte Carlo simulations of a model of thin film heteroepitaxy are performed to investigate the effects of the deposition temperature in the initial growth stages. Broad ranges of the rates of surface processes are used to model materials with several activation energies and several temperature changes, in conditions of larger diffusivity on the substrate in comparison with other film layers. When films with the same coverage are compared, the roughness increases with the deposition temperature in the regimes of island growth, coalescence, and initial formation of the continuous films. Concomitantly, the position of the minimum of the autocorrelation function is displaced to larger sizes. These apparently universal trends are consequences of the formation of wider and taller islands, and are observed with or without Ehrlich-Schwöebel barriers for adatom diffusion at step edges. The roughness increase with temperature qualitatively matches the observations of recent works on the deposition of inorganic and organic materials. In thicker films, simulations with some parameter sets show the decrease of roughness with temperature. In these cases, a re-entrance of roughness may be observed in the initial formation of the continuous films.
Collapse
|
7
|
Empting E, Bader N, Oettel M. Interplay of orientational order and roughness in simulated thin film growth of anisotropically interacting particles. Phys Rev E 2022; 105:045306. [PMID: 35590594 DOI: 10.1103/physreve.105.045306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Roughness and orientational order in thin films of anisotropic particles are investigated using kinetic Monte Carlo simulations on a cubic lattice. Anisotropic next-neighbor interactions between the lattice particles were chosen to mimic the effects of shape anisotropy in the interactions of disk- or rodlike molecules with van der Waals attractions. Increasing anisotropy leads first to a preferred orientation in the film (which is close to the corresponding equilibrium transition) while the qualitative mode of roughness evolution (known from isotropic systems) does not change. At strong anisotropies, an effective step-edge (Ehrlich-Schwoebel) barrier appears and a nonequilibrium roughening effect is found, accompanied by reordering in the film which can be interpreted as the nucleation and growth of domains of lying-down disks or rods. The information on order and roughness is combined into a diagram of dynamic growth modes.
Collapse
Affiliation(s)
- E Empting
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - N Bader
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - M Oettel
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|