1
|
Saveko A, Bekreneva M, Ponomarev I, Zelenskaya I, Riabova A, Shigueva T, Kitov V, Abu Sheli N, Nosikova I, Rukavishnikov I, Sayenko D, Tomilovskaya E. Impact of different ground-based microgravity models on human sensorimotor system. Front Physiol 2023; 14:1085545. [PMID: 36875039 PMCID: PMC9974674 DOI: 10.3389/fphys.2023.1085545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
This review includes current and updated information about various ground-based microgravity models and their impact on the human sensorimotor system. All known models of microgravity are imperfect in a simulation of the physiological effects of microgravity but have their advantages and disadvantages. This review points out that understanding the role of gravity in motion control requires consideration of data from different environments and in various contexts. The compiled information can be helpful to researchers to effectively plan experiments using ground-based models of the effects of space flight, depending on the problem posed.
Collapse
Affiliation(s)
- Alina Saveko
- Russian Federation State Scientific Center—Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Buisseret F, Dehouck V, Boulanger N, Henry G, Piccinin F, White O, Dierick F. Adiabatic Invariant of Center-of-Mass Motion during Walking as a Dynamical Stability Constraint on Stride Interval Variability and Predictability. BIOLOGY 2022; 11:biology11091334. [PMID: 36138813 PMCID: PMC9495666 DOI: 10.3390/biology11091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Human walking exhibits properties of both stability and variability. On the one hand, the variability of the interval of time between heel strikes is autocorrelated, i.e., not randomly organized. On the other hand, walking is highly stereotyped and arguments from general mechanics suggest that the stability of gait can be assessed according to invariant properties. This study aims at proposing one of those invariants. Participants walked for 10 min at a natural pace, with and without a metronome indicating participants’ preferred step frequency. In both cases, we use different parameters to assess both the variability and stability of walking. We verify a known result: the metronome strongly alters the variability of the motion. However, despite the large variability changes, our proposed adiabatic invariant is preserved in both conditions, demonstrating the stability of gait. It appears as though our model reveals dynamical constraints that are “hidden” beyond apparent walking variability. Abstract Human walking exhibits properties of global stability, and local dynamic variability, predictability, and complexity. Global stability is typically assessed by quantifying the whole-body center-of-mass motion while local dynamic variability, predictability, and complexity are assessed using the stride interval. Recent arguments from general mechanics suggest that the global stability of gait can be assessed with adiabatic invariants, i.e., quantities that remain approximately constant, even under slow external changes. Twenty-five young healthy participants walked for 10 min at a comfortable pace, with and without a metronome indicating preferred step frequency. Stride interval variability was assessed by computing the coefficient of variation, predictability using the Hurst exponent, and complexity via the fractal dimension and sample entropy. Global stability of gait was assessed using the adiabatic invariant computed from averaged kinetic energy value related to whole-body center-of-mass vertical displacement. We show that the metronome alters the stride interval variability and predictability, from autocorrelated dynamics to almost random dynamics. However, despite these large local variability and predictability changes, the adiabatic invariant is preserved in both conditions, showing the global stability of gait. Thus, the adiabatic invariant theory reveals dynamical global stability constraints that are “hidden” behind apparent local walking variability and predictability.
Collapse
Affiliation(s)
- Fabien Buisseret
- CeREF-Technique, Chaussée de Binche 159, 7000 Mons, Belgium
- Forme and Fonctionnement Humain Laboratory, Department of Physical Therapy, Haute Ecole Louvain en Hainaut, rue Trieu Kaisin 136, 6061 Montignies-sur-Sambre, Belgium
- Service de Physique Nucléaire et Subnucléaire, UMONS Research Institute for Complex Systems, Université de Mons, 20 Place du Parc, 7000 Mons, Belgium
- Correspondence:
| | - Victor Dehouck
- Service de Physique de l’Univers, Champs et Gravitation, UMONS Research Institute for Complex Systems, Université de Mons, 20 Place du Parc, 7000 Mons, Belgium
- Cognition, Action et Plasticité Sensorimotrice (CAPS), INSERM UMR1093, UFR STAPS, Université de Bourgogne Franche-Comté, BP 27877, 21078 Dijon, France
| | - Nicolas Boulanger
- Service de Physique de l’Univers, Champs et Gravitation, UMONS Research Institute for Complex Systems, Université de Mons, 20 Place du Parc, 7000 Mons, Belgium
| | - Guillaume Henry
- Forme and Fonctionnement Humain Laboratory, Department of Physical Therapy, Haute Ecole Louvain en Hainaut, rue Trieu Kaisin 136, 6061 Montignies-sur-Sambre, Belgium
| | - Florence Piccinin
- Forme and Fonctionnement Humain Laboratory, Department of Physical Therapy, Haute Ecole Louvain en Hainaut, rue Trieu Kaisin 136, 6061 Montignies-sur-Sambre, Belgium
| | - Olivier White
- Cognition, Action et Plasticité Sensorimotrice (CAPS), INSERM UMR1093, UFR STAPS, Université de Bourgogne Franche-Comté, BP 27877, 21078 Dijon, France
| | - Frédéric Dierick
- CeREF-Technique, Chaussée de Binche 159, 7000 Mons, Belgium
- Laboratoire d’Analyse du Mouvement et de la Posture (LAMP), Centre National de Rééducation Fonctionnelle et de Réadaptation—Rehazenter, Rue André Vésale 1, 2674 Luxembourg, Luxembourg
- Faculté des Sciences de la Motricité, UCLouvain, Place Pierre de Coubertin 2, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|