1
|
De Corato M, Martínez-Lera P. Enhanced rotational diffusion and spontaneous rotation of an active Janus disk in a complex fluid. SOFT MATTER 2025; 21:186-197. [PMID: 39636056 DOI: 10.1039/d4sm01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Active colloids and self-propelled particles moving through microstructured fluids can display different behavior compared to what is observed in simple fluids. As they are driven out of equilibrium in complex fluids they can experience enhanced translational and rotational diffusion as well as instabilities. In this work, we study the deterministic and the Brownian rotational dynamics of an active Janus disk propelling at a constant speed through a complex fluid. The interactions between the Janus disk and the complex fluid are modeled using a fluctuating advection-diffusion equation, which we solve using the finite element method. Motivated by experiments, we focus on the case of a complex fluid comprising molecules that are much smaller than the size of the active disk but much bigger than the solvent. Using numerical simulations, we elucidate the interplay between active motion and fluid microstructure that leads to enhanced rotational diffusion and spontaneous rotation observed in experiments employing Janus colloids in polymer solutions. By increasing the propulsion speed of the Janus disk, the simulations predict the onset of a spontaneous rotation and an increase of the rotational diffusion coefficient by orders of magnitude compared to its equilibrium value. These phenomena depend strongly on the number density of the constituents of the complex fluid and their interactions with the two sides of the Janus disk. Given the simplicity of our model, we expect that our findings will apply to a wide range of active systems propelling through complex media.
Collapse
Affiliation(s)
- Marco De Corato
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| | - Paula Martínez-Lera
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
2
|
Decayeux J, Fries J, Dahirel V, Jardat M, Illien P. Isotropic active colloids: explicit vs. implicit descriptions of propulsion mechanisms. SOFT MATTER 2023; 19:8997-9005. [PMID: 37965908 DOI: 10.1039/d3sm00763d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Modeling the couplings between active particles often neglects the possible many-body effects that control the propulsion mechanism. Accounting for such effects requires the explicit modeling of the molecular details at the origin of activity. Here, we take advantage of a recent two-dimensional model of isotropic active particles whose propulsion originates from the interactions between solute particles in the bath. The colloid catalyzes a chemical reaction in its vicinity, which results in a local phase separation of solute particles, and the density fluctuations of solute particles cause the enhanced diffusion of the colloid. In this paper, we investigate an assembly of such active particles, using (i) an explicit model, where the microscopic dynamics of the solute particles is accounted for; and (ii) an implicit model, whose parameters are inferred from the explicit model at infinite dilution. In the explicit solute model, the long-time diffusion coefficient of the active colloids strongly decreases with density, an effect which is not captured by the derived implicit model. This suggests that classical models, which usually decouple pair interactions from activity, fail to describe collective dynamics in active colloidal systems driven by solute-solute interactions.
Collapse
Affiliation(s)
- Jeanne Decayeux
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Jacques Fries
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Vincent Dahirel
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Marie Jardat
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
3
|
Lan Y, Xu M, Xie J, Yang Y, Jiang H. Spontaneous symmetry-breaking of the active cluster drives the directed movement and self-sustained oscillation of symmetric rod-like passive particles. SOFT MATTER 2023; 19:3222-3227. [PMID: 37083022 DOI: 10.1039/d2sm01243j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Active particles without detailed balance can rectify their random motions to drive the directed movement or rotation of asymmetric passive obstacles. However, whether they can drive the directed movement of symmetric passive obstacles is still unclear. Here, we show that a rod-like passive particle which is fixed to move along the x-axis in an active bath can keep long-lived directed movement at nearly constant speed due to the spontaneous symmetry breaking of the neighboring active particle cluster. If the passive particle is further confined by a harmonic potential, it may undergo self-sustained periodic oscillation for an appropriate length of the passive particle and self-propelled velocity of active particles. The restoring force from the harmonic potential will trigger the velocity jump-off and thus lead to self-sustained periodic oscillation. Remarkably, the relationship between the velocity of the passive particle and the external force shows that the effective viscosity of the active bath may become negative in some regime. Finally, we develop a minimum 1D theoretical model to further probe the mechanism underlying the directed movement and self-sustained oscillation of the passive particle. Our findings reveal the effect of the moving boundary on the active bath and demonstrate a novel method to extract practical mechanical work from the active bath to propel microdevices.
Collapse
Affiliation(s)
- Ying Lan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Man Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jinjiang Xie
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
4
|
Kailasham R, Khair AS. Non-Brownian diffusion and chaotic rheology of autophoretic disks. Phys Rev E 2023; 107:044609. [PMID: 37198791 DOI: 10.1103/physreve.107.044609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
The dynamics of a two-dimensional autophoretic disk is quantified as a minimal model for the chaotic trajectories undertaken by active droplets. Via direct numerical simulations, we show that the mean-square displacement of the disk in a quiescent fluid is linear at long times. Surprisingly, however, this apparently diffusive behavior is non-Brownian, owing to strong cross correlations in the displacement tensor. The effect of a shear flow field on the chaotic motion of an autophoretic disk is examined. Here, the stresslet on the disk is chaotic for weak shear flows; a dilute suspension of such disks would exhibit a chaotic shear rheology. This chaotic rheology is quenched first into a periodic state and ultimately a steady state as the flow strength is increased.
Collapse
Affiliation(s)
- R Kailasham
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Aditya S Khair
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
5
|
Decayeux J, Jardat M, Illien P, Dahirel V. Conditions for the propulsion of a colloid surrounded by a mesoscale phase separation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:96. [PMID: 36459281 DOI: 10.1140/epje/s10189-022-00247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
We study a two-dimensional model of an active isotropic colloid whose propulsion is linked to the interactions between solute particles of the bath. The colloid catalyzes a chemical reaction in its vicinity, that yields a local phase separation of solute particles. The density fluctuations of solute particles result in the enhanced diffusion of the colloid. Using numerical simulations, we thoroughly investigate the conditions under which activity occurs, and we establish a state diagram for the activity of the colloid as a function of the parameters of the model. We use the generated data to unravel a key observable that controls the existence and the intensity of activity: The filling fraction of the reaction area. Remarkably, we finally show that propulsion also occurs in three-dimensional geometries, which confirms the interest of this mechanism for experimental applications.
Collapse
Affiliation(s)
- Jeanne Decayeux
- Sorbonne Université, CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux)), UMR 8234, F-75005 Paris, France
| | - Marie Jardat
- Sorbonne Université, CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux)), UMR 8234, F-75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux)), UMR 8234, F-75005 Paris, France
| | - Vincent Dahirel
- Sorbonne Université, CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux)), UMR 8234, F-75005 Paris, France.
| |
Collapse
|