Guo W, Yan H, Chen H. Extremal statistics for a resetting Brownian motion before its first-passage time.
Phys Rev E 2023;
108:044115. [PMID:
37978585 DOI:
10.1103/physreve.108.044115]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023]
Abstract
We study the extreme value statistics of a one-dimensional resetting Brownian motion (RBM) till its first passage through the origin starting from the position x_{0} (>0). By deriving the exit probability of RBM in an interval [0,M] from the origin, we obtain the distribution P_{r}(M|x_{0}) of the maximum displacement M and thus gives the expected value 〈M〉 of M as functions of the resetting rate r and x_{0}. We find that 〈M〉 decreases monotonically as r increases, and tends to 2x_{0} as r→∞. In the opposite limit, 〈M〉 diverges logarithmically as r→0. Moreover, we derive the propagator of RBM in the Laplace domain in the presence of both absorbing ends, and then leads to the joint distribution P_{r}(M,t_{m}|x_{0}) of M and the time t_{m} at which this maximum is achieved in the Laplace domain by using a path decomposition technique, from which the expected value 〈t_{m}〉 of t_{m} is obtained explicitly. Interestingly, 〈t_{m}〉 shows a nonmonotonic dependence on r, and attains its minimum at an optimal r^{*}≈2.71691D/x_{0}^{2}, where D is the diffusion coefficient. Finally, we perform extensive simulations to validate our theoretical results.
Collapse