1
|
Barbalho R, Rodrigues S, Tenorio M, Menezes J. Ambush strategy enhances organisms' performance in rock-paper-scissors games. Biosystems 2024; 240:105229. [PMID: 38740124 DOI: 10.1016/j.biosystems.2024.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
We study a five-species cyclic system wherein individuals of one species strategically adapt their movements to enhance their performance in the spatial rock-paper-scissors game. Environmental cues enable the awareness of the presence of organisms targeted for elimination in the cyclic game. If the local density of target organisms is sufficiently high, individuals move towards concentrated areas for direct attack; otherwise, they employ an ambush tactic, maximising the chances of success by targeting regions likely to be dominated by opponents. Running stochastic simulations, we discover that the ambush strategy enhances the likelihood of individual success compared to direct attacks alone, leading to uneven spatial patterns characterised by spiral waves. We compute the autocorrelation function and measure how the ambush tactic unbalances the organisms' spatial organisation by calculating the characteristic length scale of typical spatial domains of each species. We demonstrate that the threshold for local species density influences the ambush strategy's effectiveness, while the neighbourhood perception range significantly impacts decision-making accuracy. The outcomes show that long-range perception improves performance by over 60%, although there is potential interference in decision-making under high attack triggers. Understanding how organisms' adaptation their environment enhances their performance may be helpful not only for ecologists, but also for data scientists, aiming to improve artificial intelligence systems.
Collapse
Affiliation(s)
- R Barbalho
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - S Rodrigues
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - M Tenorio
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Av Santos Dumont 1560, 59280-000, Macaiba, RN, Brazil
| | - J Menezes
- Research Centre for Data Intelligence, Zuyd University of Applied Sciences, Nieuw Eyckholt 300, 6419 DJ, Heerlen, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Menezes J, Rangel E. Locally adaptive aggregation of organisms under death risk in rock-paper-scissors models. Biosystems 2023; 227-228:104901. [PMID: 37121500 DOI: 10.1016/j.biosystems.2023.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
We run stochastic simulations of the spatial version of the rock-paper-scissors game, considering that individuals use sensory abilities to scan the environment to detect the presence of enemies. If the local dangerousness level is above a tolerable threshold, individuals aggregate instead of moving randomly on the lattice. We study the impact of the locally adaptive aggregation on the organisms' spatial organisation by measuring the characteristic length scale of the spatial domains occupied by organisms of a single species. Our results reveal that aggregation is beneficial if triggered when the local density of opponents does not exceed 30%; otherwise, the behavioural strategy may harm individuals by increasing the average death risk. We show that if organisms can perceive further distances, they can accurately scan and interpret the signals from the neighbourhood, maximising the effects of the locally adaptive aggregation on the death risk. Finally, we show that the locally adaptive aggregation behaviour promotes biodiversity independently of the organism's mobility. The coexistence probability rises if organisms join conspecifics, even in the presence of a small number of enemies. We verify that our conclusions hold for more complex systems by simulating the generalised rock-paper-scissors models with five and seven species. Our discoveries may be helpful to ecologists in understanding systems where organisms' self-defence behaviour adapts to local environmental cues.
Collapse
Affiliation(s)
- J Menezes
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; School of Science and Technology, Federal University of Rio Grande do Norte, Caixa Postal 1524, 59072-970, Natal, RN, Brazil.
| | - E Rangel
- School of Science and Technology, Federal University of Rio Grande do Norte, Caixa Postal 1524, 59072-970, Natal, RN, Brazil; Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho 300, Natal, 59078-970, Brazil
| |
Collapse
|
3
|
Menezes J, Batista S, Tenorio M, Triaca E, Moura B. How local antipredator response unbalances the rock-paper-scissors model. CHAOS (WOODBURY, N.Y.) 2022; 32:123142. [PMID: 36587336 DOI: 10.1063/5.0106165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Antipredator behavior is a self-preservation strategy present in many biological systems, where individuals join the effort in a collective reaction to avoid being caught by an approaching predator. We study a nonhierarchical tritrophic system, whose predator-prey interactions are described by the rock-paper-scissors game rules. We perform a set of spatial stochastic simulations where organisms of one out of the species can resist predation in a collective strategy. The drop in predation capacity is local, which means that each predator faces a particular opposition depending on the prey group size surrounding it. Considering that the interference in a predator action depends on the prey's physical and cognitive ability, we explore the role of a conditioning factor that indicates the fraction of the species apt to perform the antipredator strategy. Because of the local unbalancing of the cyclic predator-prey interactions, departed spatial domains mainly occupied by a single species emerge. Unlike the rock-paper-scissors model with a weak species because of a nonlocal reason, our findings show that if the predation probability of one species is reduced because individuals face local antipredator response, the species does not predominate. Instead, the local unbalancing of the rock-paper-scissors model results in the prevalence of the weak species' prey. Finally, the outcomes show that local unevenness may jeopardize biodiversity, with the coexistence being more threatened for high mobility.
Collapse
Affiliation(s)
- J Menezes
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - S Batista
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - M Tenorio
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - E Triaca
- Department of Mechanical Engineering, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 300 Lagoa Nova, 59078-970 Natal, RN, Brazil, Brasil
| | - B Moura
- Department of Biomedical Engineering, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho 300, Lagoa Nova, 59078-970, Natal, RN, Brazil
| |
Collapse
|
4
|
Mobility unevenness in rock–paper–scissors models. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Menezes J, Batista S, Rangel E. Spatial organisation plasticity reduces disease infection risk in rock-paper-scissors models. Biosystems 2022; 221:104777. [PMID: 36070849 DOI: 10.1016/j.biosystems.2022.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
We study a three-species cyclic game system where organisms face a contagious disease whose virulence may change by a pathogen mutation. As a responsive defence strategy, organisms' mobility is restricted to reduce disease dissemination in the system. The impact of the collective self-preservation strategy on the disease infection risk is investigated by performing stochastic simulations of the spatial version of the rock-paper-scissors game. Our outcomes show that the mobility control strategy induces plasticity in the spatial patterns with groups of organisms of the same species inhabiting spatial domains whose characteristic length scales depend on the level of dispersal restrictions. The spatial organisation plasticity allows the ecosystems to adapt to minimise the individuals' disease contamination risk if an eventual pathogen alters the disease virulence. We discover that if a pathogen mutation makes the disease more transmissible or less lethal, the organisms benefit more if the mobility is not strongly restricted, thus forming large spatial domains. Conversely, the benefits of protecting against a pathogen causing a less contagious or deadlier disease are maximised if the average size of groups of individuals of the same species is significantly limited, reducing the dimensions of groups of organisms significantly. Our findings may help biologists understand the effects of dispersal control as a conservation strategy in ecosystems affected by epidemic outbreaks.
Collapse
Affiliation(s)
- J Menezes
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil.
| | - S Batista
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil.
| | - E Rangel
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil.
| |
Collapse
|
6
|
Combination of survival movement strategies in cyclic game systems during an epidemic. Biosystems 2022; 217:104689. [DOI: 10.1016/j.biosystems.2022.104689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/28/2022]
|
7
|
Menezes J, Rangel E, Moura B. Aggregation as an antipredator strategy in the rock-paper-scissors model. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|