1
|
Abe K, Atkinson PS, Cheung CS, Liang H, Goehring L, Inasawa S. Dynamics of drying colloidal suspensions, measured by optical coherence tomography. SOFT MATTER 2024; 20:2381-2393. [PMID: 38376422 DOI: 10.1039/d3sm01560b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Colloidal suspensions are the basis of a wide variety of coatings, prepared as liquids and then dried into solid films. The processes at play during film formation, however, are difficult to observe directly. Here, we demonstrate that optical coherence tomography (OCT) can provide fast, non-contact, precise profiling of the dynamics within a drying suspension. Using a scanning Michelson interferometer with a broadband laser source, OCT creates cross-sectional images of the optical stratigraphy of a sample. With this method, we observed the drying of colloidal silica in Hele-Shaw cells with 10 μm transverse and 1.8 μm depth resolution, over a 1 cm scan line and a 15 s sampling period. The resulting images were calibrated to show how the concentration of colloidal particles varied with position and drying time. This gives access to important transport properties, for example, of how collective diffusion depends on particle concentration. Looking at early-time behaviours, we also show how a drying front initially develops, and how the induction time before the appearance of a solid film depends on the balance of diffusion and evaporation-driven motion. Pairing these results with optical microscopy and particle tracking techniques, we find that film formation can be significantly delayed by any density-driven circulation occurring near the drying front.
Collapse
Affiliation(s)
- Kohei Abe
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tan-cha, Onna, Kunigami, Okinawa, 904-0497, Japan
| | - Patrick Saul Atkinson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Chi Shing Cheung
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Haida Liang
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Lucas Goehring
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Susumu Inasawa
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Japan.
| |
Collapse
|
2
|
Roger K, Atasi O, Lalanne B. Measuring mutual diffusion coefficients in aqueous binary mixtures with unidimensional drying cells. Phys Chem Chem Phys 2023; 25:994-998. [PMID: 36520070 DOI: 10.1039/d2cp03118c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemical diffusion is a mass transport process caused by thermally generated motions of species. In a binary mixture, the diffusion of one species in one direction involves the diffusion of another species in the opposite direction, which corresponds to a single mutual diffusion coefficient. Here, we report a simple and general method to measure such coefficients in binary liquid mixtures, using the PNIPAM/water system as a study case. Experimentally, we show how a simple unidirectional drying cell coupled with a spatially-resolved characterization method such as Raman microscopy can yield concentration gradients developing in between two boundaries of known and constant chemical potential. Acquiring such gradients over time leads to a time-set that is shown to collapse to a single master curve using a change of variable. Such a scaling law offers a self-checking frame for solving analytically the diffusion-advection equation. As a result, we show that a simple analytical formula relates the measured concentration gradient with the concentration-dependent mutual diffusion coefficient. In the PNIPAM/water system, the mutual diffusion coefficient sharply decreases at low water content. Our work thus highlights the importance of considering the concentration-dependence of the mutual diffusion coefficient in complex aqueous solutions and provides a method to measure it.
Collapse
Affiliation(s)
- Kevin Roger
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Institut National Polytechnique de Toulouse, Université Paul Sabatier, Toulouse, France.
| | - Omer Atasi
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Institut National Polytechnique de Toulouse, Université Paul Sabatier, Toulouse, France.
| | - Benjamin Lalanne
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Institut National Polytechnique de Toulouse, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|