1
|
Yang X, Prakash M, Brumley DR. Escape motility of multicellular magnetotactic prokaryotes. J R Soc Interface 2024; 21:20240310. [PMID: 39410817 PMCID: PMC11480751 DOI: 10.1098/rsif.2024.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Microorganisms often actively respond to multiple external stimuli to navigate toward their preferred niches. For example, unicellular magnetotactic bacteria integrate both oxygen sensory information and the Earth's geomagnetic field to help them locate anoxic conditions in a process known as magneto-aerotaxis. However, for multicellular magnetotactic prokaryotes (MMPs), the colonial structure of 4-16 cells places fundamental constraints on collective sensing, colony motility and directed swimming. To investigate how colonies navigate environments with multiple stimuli, we performed microfluidic experiments of MMPs with opposing magnetic fields and oxygen gradients. These experiments reveal unusual back-and-forth excursions called 'escape motility', in which colonies shuttle along magnetic field lines, punctuated by abrupt-yet highly coordinated-changes in collective ciliary beating. Through cell tracking and numerical simulations, we demonstrate that escape motility can arise through a simple magneto-aerotaxis mechanism, which includes the effect of magnetic torques and chemical sensing. At sufficiently high densities of MMPs, we observe the formation of dynamic crystal structures, whose stability is governed by the magnetic field strength and near-field hydrodynamic interactions. The results shed light on how some of the earliest multicellular organisms navigate complex physico-chemical landscapes.
Collapse
Affiliation(s)
- Xinyi Yang
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria3010, Australia
| | - Manu Prakash
- Department of Bioengineering, Biology and Oceans, Stanford University, Stanford, CA, USA
| | - Douglas R. Brumley
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria3010, Australia
| |
Collapse
|
2
|
Bailey MR, Barriuso Gutiérrez CM, Martín-Roca J, Niggel V, Carrasco-Fadanelli V, Buttinoni I, Pagonabarraga I, Isa L, Valeriani C. Minimal numerical ingredients describe chemical microswimmers' 3-D motion. NANOSCALE 2024; 16:2444-2451. [PMID: 38214073 DOI: 10.1039/d3nr03695b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The underlying mechanisms and physics of catalytic Janus microswimmers is highly complex, requiring details of the associated phoretic fields and the physiochemical properties of catalyst, particle, boundaries, and the fuel used. Therefore, developing a minimal (and more general) model capable of capturing the overall dynamics of these autonomous particles is highly desirable. In the presented work, we demonstrate that a coarse-grained dissipative particle-hydrodynamics model is capable of describing the behaviour of various chemical microswimmer systems. Specifically, we show how a competing balance between hydrodynamic interactions experienced by a squirmer in the presence of a substrate, gravity, and mass and shape asymmetries can reproduce a range of dynamics seen in different experimental systems. We hope that our general model will inspire further synthetic work where various modes of swimmer motion can be encoded via shape and mass during fabrication, helping to realise the still outstanding goal of microswimmers capable of complex 3-D behaviour.
Collapse
Affiliation(s)
- Maximilian R Bailey
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich, Switzerland
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.
| | - C Miguel Barriuso Gutiérrez
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.
| | - José Martín-Roca
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.
- Departamento de Química Física, Facultad de Química, Universidad Complutense de Madrid, Madrid, Spain
| | - Vincent Niggel
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Virginia Carrasco-Fadanelli
- Department of Physics, Institute of Experimental Colloidal Physics, Heinrich-Heine University, Düsseldorf, Germany
| | - Ivo Buttinoni
- Department of Physics, Institute of Experimental Colloidal Physics, Heinrich-Heine University, Düsseldorf, Germany
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.
- GISC - Grupo Interdiplinar de Sistemas Complejos, Madrid, Spain
| |
Collapse
|
3
|
Samatas S, Lintuvuori J. Hydrodynamic Synchronization of Chiral Microswimmers. PHYSICAL REVIEW LETTERS 2023; 130:024001. [PMID: 36706412 DOI: 10.1103/physrevlett.130.024001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
We study synchronization in bulk suspensions of spherical microswimmers with chiral trajectories using large scale numerics. The model is generic. It corresponds to the lowest order solution of a general model for self-propulsion at low Reynolds numbers, consisting of a nonaxisymmetric rotating source dipole. We show that both purely circular and helical swimmers can spontaneously synchronize their rotation. The synchronized state corresponds to velocity alignment with high orientational order in both the polar and azimuthal directions. Finally, we consider a racemic mixture of helical swimmers where intraspecies synchronization is observed while the system remains as a spatially uniform fluid. Our results demonstrate hydrodynamic synchronization as a natural collective phenomenon for microswimmers with chiral trajectories.
Collapse
Affiliation(s)
- Sotiris Samatas
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Juho Lintuvuori
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| |
Collapse
|
4
|
Maity R, Burada PS. Near- and far-field hydrodynamic interaction of two chiral squirmers. Phys Rev E 2022; 106:054613. [PMID: 36559415 DOI: 10.1103/physreve.106.054613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Hydrodynamic interaction strongly influences the collective behavior of microswimmers. With this work, we study the behavior of two hydrodynamically interacting self-propelled chiral swimmers in the low Reynolds number regime, considering both the near- and far-field interactions. We use the chiral squirmer model [see Burada et al., Phys. Rev. E 105, 024603 (2022)2470-004510.1103/PhysRevE.105.024603], a spherically shaped body with nonaxisymmetric surface slip velocity, which generalizes the well-known squirmer model. The previous work was restricted only to the case, while the far-field hydrodynamic interaction was influential among the swimmers. It did not approach the scenario while both the swimmers are very close and lubrication effects become dominant. We calculate the lubrication force between the swimmers when they are very close. By varying the slip coefficients and the initial configuration of the swimmers, we investigate their hydrodynamic behavior. In the presence of lubrication force, the swimmers either repel each other or exhibit bounded motion where the distance between the swimmers alters periodically. We identify the possible behaviors exhibited by the chiral squirmers, such as monotonic divergence, divergence, and bounded, as was found in the previous study. However, in the current study, we observe that both the monotonic convergence and the convergence states are converted into divergence states due to the arising lubrication effects. The lubrication force favors the bounded motion in some parameter regimes. This study helps to understand the collective behavior of dense suspension of ciliated microorganisms and artificial swimmers.
Collapse
Affiliation(s)
- Ruma Maity
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - P S Burada
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|