1
|
Fairushin II, Mokshin AV. Collective ion dynamics in Coulomb one-component plasmas within the self-consistent relaxation theory. Phys Rev E 2023; 108:015206. [PMID: 37583226 DOI: 10.1103/physreve.108.015206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
In this paper, we present the theoretical formalism describing the collective ion dynamics of the nonideal Coulomb classical one-component plasmas on the basis of the self-consistent relaxation theory. The theory is adapted to account for correlations between the frequency relaxation parameters that characterize the three- and four-particle dynamics and the parameters associated with the two-particle dynamics. The dynamic structure factor spectra and dispersion characteristics calculated for a wide range of wave numbers are in agreement with the molecular dynamics simulation data and the results obtained with the theory of the frequency moments. The proposed formalism reproduces all the features inherent to the Coulomb one-component plasmas and requires only knowledge of the coupling parameter and the information about the structure.
Collapse
Affiliation(s)
- Ilnaz I Fairushin
- Department of Computational Physics, Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Anatolii V Mokshin
- Department of Computational Physics, Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
2
|
Dhaka A, Subhash PV, Bandyopadhyay P, Sen A. Auto-correlations of microscopic density fluctuations for Yukawa fluids in the generalized hydrodynamics framework with viscoelastic effects. Sci Rep 2022; 12:21883. [PMID: 36536026 PMCID: PMC9763351 DOI: 10.1038/s41598-022-26401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The present work develops a theoretical procedure for obtaining transport coefficients of Yukawa systems from density fluctuations. The dynamics of Yukawa systems are described in the framework of the generalized hydrodynamic (GH) model that incorporates strong coupling and visco-elastic memory effects by using an exponentially decaying memory function in time. A hydrodynamic matrix for such a system is exactly derived and then used to obtain an analytic expression for the density autocorrelation function (DAF)-a marker of the time dynamics of density fluctuations. The present approach is validated against a DAF obtained from numerical data of Molecular Dynamics (MD) simulations of a dusty plasma system that is a practical example of a Yukawa system. The MD results and analytic expressions derived from the model equations are then used to obtain various transport coefficients and the latter are compared with values available in the literature from other models. The influence of strong coupling and visco-elastic effects on the transport parameters are discussed. Finally, the utility of our calculations for obtaining reliable estimates of transport coefficients from experimentally determined DAF is pointed out.
Collapse
Affiliation(s)
- Ankit Dhaka
- grid.502813.d0000 0004 1796 2986Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094 India
| | - P. V. Subhash
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094 India ,grid.502813.d0000 0004 1796 2986ITER-India, Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 India
| | - P. Bandyopadhyay
- grid.502813.d0000 0004 1796 2986Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094 India
| | - A. Sen
- grid.502813.d0000 0004 1796 2986Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094 India
| |
Collapse
|