Pršlja P, Žibert T, Urbic T. Monte Carlo simulations of simple two dimensional water-alcohol mixtures.
J Mol Liq 2022;
368:120692. [PMID:
37731590 PMCID:
PMC10508878 DOI:
10.1016/j.molliq.2022.120692]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Simple alcohols such as methanol and ethanol, are organic chemicals that can be used to store energy, which can be used as an alternative to fossil fuels. Each alcohol has at least one hydroxyl group attached to a carbon atom of an alkyl group. They can be considered as organic derivatives of water in which one of the hydrogen atoms is replaced by an alkyl group. In this work, we determined the thermodynamic and structural properties of two dimensional water-alcohol mixtures using the Monte Carlo method. We used two-dimensional Mercedes-Benz (MB) model for water and MB based models for lower alcohols. The structural and thermodynamic properties of the mixtures were studied by Monte Carlo simulations in the isothermal-isobaric ensemble. We show that 2D models display similar trends in the density maxima as in real water-alcohol mixtures. With increasing content of alcohols, the temperature of maxima increases and upon further increase starts to decrease and at high concentrations, the density maxima disappears.
Collapse