Smith NR. Exact short-time height distribution and dynamical phase transition in the relaxation of a Kardar-Parisi-Zhang interface with random initial condition.
Phys Rev E 2022;
106:044111. [PMID:
36397488 DOI:
10.1103/physreve.106.044111]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
We consider the relaxation (noise-free) statistics of the one-point height H=h(x=0,t), where h(x,t) is the evolving height of a one-dimensional Kardar-Parisi-Zhang (KPZ) interface, starting from a Brownian (random) initial condition. We find that, at short times, the distribution of H takes the same scaling form -lnP(H,t)=S(H)/sqrt[t] as the distribution of H for the KPZ interface driven by noise, and we find the exact large-deviation function S(H) analytically. At a critical value H=H_{c}, the second derivative of S(H) jumps, signaling a dynamical phase transition (DPT). Furthermore, we calculate exactly the most likely history of the interface that leads to a given H, and show that the DPT is associated with spontaneous breaking of the mirror symmetry x↔-x of the interface. In turn, we find that this symmetry breaking is a consequence of the nonconvexity of a large-deviation function that is closely related to S(H), and describes a similar problem but in half space. Moreover, the critical point H_{c} is related to the inflection point of the large-deviation function of the half-space problem.
Collapse