1
|
Zhang J, Wu K, Dong J, Feng J, Yu L. Modeling the interplay between regional heterogeneity and critical dynamics underlying brain functional networks. Neural Netw 2024; 184:107100. [PMID: 39740389 DOI: 10.1016/j.neunet.2024.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/03/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
The human brain exhibits heterogeneity across regions and network connectivity patterns; However, how these heterogeneities contribute to whole-brain network functions and cognitive capacities remains unclear. In this study, we focus on the regional heterogeneity reflected in local dynamics and study how it contributes to the emergence of functional connectivity patterns, network ignition dynamics of the empirical brains. We find that the level of synchrony among voxelwise neural activities measured from the fMRI data is significantly correlated with the transcriptional variations in excitatory and inhibitory receptor gene expression. Consequently, we construct heterogeneous whole-brain network models with nodal excitability calibrated by the synchronization measure of regional dynamics. We demonstrate that as the extent of heterogeneity increases, the models operating around the critical point between order and disorder generate simulated functional connectivity networks increasingly similar to empirical resting-state or working memory task-evoked function connectivity networks. Furthermore, the heterogeneous models can predict individual differences in resting-state and task-evoked reconfiguration of the functional connectivity, as well as the comparative causal effect of empirical brain networks-that is, how the dynamics of one brain region affect whole-brain synchronization. Overall, this work demonstrates the viability of using regional heterogeneous functional signals to improve the performance of the whole-brain models, and illustrates how regional heterogeneity in human brains interplays with structural connections and critical dynamics to contribute to the emergence of functional connectivity networks.
Collapse
Affiliation(s)
- Jijin Zhang
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kejian Wu
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jiaqi Dong
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200433, China; Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK; School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Lianchun Yu
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
2
|
Yang C, Luo Q, Shu H, Le Bouquin Jeannès R, Li J, Xiang W. Exploration of interictal to ictal transition in epileptic seizures using a neural mass model. Cogn Neurodyn 2024; 18:1215-1225. [PMID: 38826671 PMCID: PMC11143138 DOI: 10.1007/s11571-023-09976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 06/04/2024] Open
Abstract
An epileptic seizure can usually be divided into three stages: interictal, preictal, and ictal. However, the seizure underlying the transition from interictal to ictal activities in the brain involves complex interactions between inhibition and excitation in groups of neurons. To explore this mechanism at the level of a single population, this paper employed a neural mass model, named the complete physiology-based model (cPBM), to reconstruct electroencephalographic (EEG) signals and to infer the changes in excitatory/inhibitory connections related to excitation-inhibition (E-I) balance based on an open dataset recorded for ten epileptic patients. Since epileptic signals display spectral characteristics, spectral dynamic causal modelling (DCM) was applied to quantify these frequency characteristics by maximizing the free energy in the framework of power spectral density (PSD) and estimating the cPBM parameters. In addition, to address the local maximum problem that DCM may suffer from, a hybrid deterministic DCM (H-DCM) approach was proposed, with a deterministic annealing-based scheme applied in two directions. The H-DCM approach adjusts the temperature introduced in the objective function by gradually decreasing the temperature to obtain relatively good initialization and then gradually increasing the temperature to search for a better estimation after each maximization. The results showed that (i) reconstructed EEG signals belonging to the three stages together with their PSDs can be reproduced from the estimated parameters of the cPBM; (ii) compared to DCM, traditional D-DCM and anti D-DCM, the proposed H-DCM shows higher free energies and lower root mean square error (RMSE), and it provides the best performance for all stages (e.g., the RMSEs between the reconstructed PSD computed from the reconstructed EEG signal and the sample PSD obtained from the real EEG signal are 0.33 ± 0.08, 0.67 ± 0.37 and 0.78 ± 0.57 in the interictal, preictal and ictal stages, respectively); and (iii) the transition from interictal to ictal activity can be explained by an increase in the connections between pyramidal cells and excitatory interneurons and between pyramidal cells and fast inhibitory interneurons, as well as a decrease in the self-loop connection of the fast inhibitory interneurons in the cPBM. Moreover, the E-I balance, defined as the ratio between the excitatory connection from pyramidal cells to fast inhibitory interneurons and the inhibitory connection with the self-loop of fast inhibitory interneurons, is also significantly increased during the epileptic seizure transition. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09976-6.
Collapse
Affiliation(s)
- Chunfeng Yang
- Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing, 210096 China
- Jiangsu Provincal Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, 210096 China
- Centre de Recherche en Information Biomédicale Sino-français, Southeast University & Université de Rennes 1, Nanjing, 210096 China
| | - Qingbo Luo
- Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing, 210096 China
- Jiangsu Provincal Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, 210096 China
- Centre de Recherche en Information Biomédicale Sino-français, Southeast University & Université de Rennes 1, Nanjing, 210096 China
| | - Huazhong Shu
- Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing, 210096 China
- Jiangsu Provincal Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, 210096 China
- Centre de Recherche en Information Biomédicale Sino-français, Southeast University & Université de Rennes 1, Nanjing, 210096 China
| | - Régine Le Bouquin Jeannès
- Centre de Recherche en Information Biomédicale Sino-français, Southeast University & Université de Rennes 1, Nanjing, 210096 China
- Univ Rennes, Inserm, LTSI, UMR 1099, Rennes, 35000 France
| | - Jianqing Li
- Jiangsu Province Engineering Research Center for Smart Wearable and Rehabilitation Devices, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166 China
| | - Wentao Xiang
- Jiangsu Province Engineering Research Center for Smart Wearable and Rehabilitation Devices, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
3
|
Fan D, Wu H, Luan G, Wang Q. The distribution and heterogeneity of excitability in focal epileptic network potentially contribute to the seizure propagation. Front Psychiatry 2023; 14:1137704. [PMID: 36998622 PMCID: PMC10043226 DOI: 10.3389/fpsyt.2023.1137704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionExisting dynamical models can explain the transmigration mechanisms involved in seizures but are limited to a single modality. Combining models with networks can reproduce scaled epileptic dynamics. And the structure and coupling interactions of the network, as well as the heterogeneity of both the node and network activities, may influence the final state of the network model.MethodsWe built a fully connected network with focal nodes prominently interacting and established a timescale separated epileptic network model. The factors affecting epileptic network seizure were explored by varying the connectivity patterns of focal network nodes and modulating the distribution of network excitability.ResultsThe whole brain network topology as the brain activity foundation affects the consistent delayed clustering seizure propagation. In addition, the network size and distribution heterogeneity of the focal excitatory nodes can influence seizure frequency. With the increasing of the network size and averaged excitability level of focal network, the seizure period decreases. In contrast, the larger heterogeneity of excitability for focal network nodes can lower the functional activity level (average degree) of focal network. There are also subtle effects of focal network topologies (connection patterns of excitatory nodes) that cannot be ignored along with non-focal nodes.DiscussionUnraveling the role of excitatory factors in seizure onset and propagation can be used to understand the dynamic mechanisms and neuromodulation of epilepsy, with profound implications for the treatment of epilepsy and even for the understanding of the brain.
Collapse
Affiliation(s)
- Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Hongyu Wu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Guoming Luan
- Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- *Correspondence: Guoming Luan, ; Qingyun Wang,
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, China
- *Correspondence: Guoming Luan, ; Qingyun Wang,
| |
Collapse
|