1
|
Bánó G, Slabý C, Strejčková A, Tomori Z, Hovan A, Miskovsky P, Horvath D. Controlled stigmergy in quasi-one-dimensional active particle systems. Phys Rev E 2024; 110:024605. [PMID: 39294988 DOI: 10.1103/physreve.110.024605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/16/2024] [Indexed: 09/21/2024]
Abstract
In quasi-one-dimensional circularly symmetric systems of active particles, experiments and simulations reveal an indirect interplay between particles and environmental drag effects, proving crucial in the realm of generalized parametrically controlled stigmergy. Our investigation goes deeper into understanding how stigmergy manifests itself, closely examining unconventional, more physically grounded interpretations in contrast to established concepts. Deeper insights into the complex dynamics of stigmergically interacting particle systems are gained by systematically studying the transition regions between short- and long-term stigmergic effects. Mechanical and computational modeling techniques complement each other to provide a comprehensive understanding of various clustering patterns, oscillatory modes, and system dynamics, where hysteresis may occur depending on the conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Pavol Miskovsky
- SAFTRA Photonics, Ltd., Moldavská cesta 51, 040 11 Košice, Slovak Republic
| | | |
Collapse
|
2
|
Basak R, Kozlowski R, Pugnaloni LA, Kramar M, Socolar JES, Carlevaro CM, Kondic L. Evolution of force networks during stick-slip motion of an intruder in a granular material: Topological measures extracted from experimental data. Phys Rev E 2023; 108:054903. [PMID: 38115403 DOI: 10.1103/physreve.108.054903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023]
Abstract
In quasi-two-dimensional experiments with photoelastic particles confined to an annular region, an intruder constrained to move in a circular path halfway between the annular walls experiences stick-slip dynamics. We discuss the response of the granular medium to the driven intruder, focusing on the evolution of the force network during sticking periods. Because the available experimental data do not include precise information about individual contact forces, we use an approach developed in our previous work [Basak et al., J. Eng. Mech. 147, 04021100 (2021)0733-939910.1061/(ASCE)EM.1943-7889.0002003] based on networks constructed from measurements of the integrated strain magnitude on each particle. These networks are analyzed using topological measures based on persistence diagrams, revealing that force networks evolve smoothly but in a nontrivial manner throughout each sticking period, even though the intruder and granular particles are stationary. Characteristic features of persistence diagrams show identifiable slip precursors. In particular, the number of generators describing the structure and complexity of force networks increases consistently before slips. Key features of the dynamics are similar for granular materials composed of disks or pentagons, but some details are consistently different. In particular, we find significantly larger fluctuations of the measures computed based on persistence diagrams and, therefore, of the underlying networks, for systems of pentagonal particles.
Collapse
Affiliation(s)
- Rituparna Basak
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Ryan Kozlowski
- Department of Physics, College of the Holly Cross, Worcester, Massachusetts 01610, USA
| | - Luis A Pugnaloni
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, CONICET, Uruguay 151, 6300 Santa Rosa (La Pampa), Argentina
| | - M Kramar
- Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Joshua E S Socolar
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - C Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, 59 789, 1900 La Plata, Argentina and and Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, Av. 60 Esquina 124, La Plata 1900, Argentina
| | - Lou Kondic
- Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|