Modica KJ, Takatori SC. Soft confinement of self-propelled rods: simulation and theory.
SOFT MATTER 2024;
20:2331-2337. [PMID:
38372150 DOI:
10.1039/d3sm01340e]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
We present an analytical framework for evolving the dynamics of active rods under any periodic external potential, including confining channels and arrays of harmonic traps. As a proof of concept, we analyze the structure and dispersion of self-propelled rods under a soft, periodic one-dimensional (1D) confinement potential and under a two-dimensional (2D) periodic radial harmonic trap. While passive rods and polymers nematically order under 1D confinement, their diffusive transport along the director is limited by thermal diffusion. In contrast, self-propelled rods can generate large convective fluxes when combined with nematic ordering, producing a strong dispersion along the director. Combining theory and simulation, we demonstrate that nematic alignment and self-propulsion generates an exponential enhancement in active diffusivity along the director, in contrast to passive rods that experience at most a 2-fold increase.
Collapse