1
|
Benozzo D, Baggio G, Baron G, Chiuso A, Zampieri S, Bertoldo A. Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data. Netw Neurosci 2024; 8:965-988. [PMID: 39355437 PMCID: PMC11424037 DOI: 10.1162/netn_a_00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 10/03/2024] Open
Abstract
This study challenges the traditional focus on zero-lag statistics in resting-state functional magnetic resonance imaging (rsfMRI) research. Instead, it advocates for considering time-lag interactions to unveil the directionality and asymmetries of the brain hierarchy. Effective connectivity (EC), the state matrix in dynamical causal modeling (DCM), is a commonly used metric for studying dynamical properties and causal interactions within a linear state-space system description. Here, we focused on how time-lag statistics are incorporated within the framework of DCM resulting in an asymmetric EC matrix. Our approach involves decomposing the EC matrix, revealing a steady-state differential cross-covariance matrix that is responsible for modeling information flow and introducing time-irreversibility. Specifically, the system's dynamics, influenced by the off-diagonal part of the differential covariance, exhibit a curl steady-state flow component that breaks detailed balance and diverges the dynamics from equilibrium. Our empirical findings indicate that the EC matrix's outgoing strengths correlate with the flow described by the differential cross covariance, while incoming strengths are primarily driven by zero-lag covariance, emphasizing conditional independence over directionality.
Collapse
Affiliation(s)
- Danilo Benozzo
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giacomo Baggio
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giorgia Baron
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandro Chiuso
- Information Engineering Department, University of Padova, Padova, Italy
| | - Sandro Zampieri
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Information Engineering Department, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Nartallo-Kaluarachchi R, Asllani M, Deco G, Kringelbach ML, Goriely A, Lambiotte R. Broken detailed balance and entropy production in directed networks. Phys Rev E 2024; 110:034313. [PMID: 39425339 DOI: 10.1103/physreve.110.034313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/06/2024] [Indexed: 10/21/2024]
Abstract
The structure of a complex network plays a crucial role in determining its dynamical properties. In this paper , we show that the the degree to which a network is directed and hierarchically organized is closely associated with the degree to which its dynamics break detailed balance and produce entropy. We consider a range of dynamical processes and show how different directed network features affect their entropy production rate. We begin with an analytical treatment of a two-node network followed by numerical simulations of synthetic networks using the preferential attachment and Erdös-Renyi algorithms. Next, we analyze a collection of 97 empirical networks to determine the effect of complex real-world topologies. Finally, we present a simple method for inferring broken detailed balance and directed network structure from multivariate time series and apply our method to identify non-equilibrium dynamics and hierarchical organisation in both human neuroimaging and financial time series. Overall, our results shed light on the consequences of directed network structure on non-equilibrium dynamics and highlight the importance and ubiquity of hierarchical organisation and non-equilibrium dynamics in real-world systems.
Collapse
Affiliation(s)
| | | | | | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, 7 Stoke Pl, Oxford OX3 9BX, United Kingdom
- Center for Music in the Brain, Aarhus University, & The Royal Academy of Music, Aarhus/Aalborg, Denmark
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX United Kingdom
| | | | | |
Collapse
|
3
|
Vodret M. Irreversibility in belief dynamics: Unraveling the link to cognitive effort. Phys Rev E 2024; 110:014304. [PMID: 39160952 DOI: 10.1103/physreve.110.014304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/25/2024] [Indexed: 08/21/2024]
Abstract
The relationship between time irreversibility in neuronal dynamics and cognitive effort is a subject of growing interest in the scientific literature. Although correlations between proxies of both concepts have been experimentally observed, the underlying precise linkage between them remains elusive. Here we investigate the case of learning in decision-making tasks; we do so by introducing a thermodynamically grounded metric-inspired by Landauer's principle-which connects time-irreversible information processing to energy consumption. Equipped with this metric, we investigate the role of macroscopic time-reversal symmetry breaking in belief dynamics for the case of an agent with finite sensitivity while performing a static two-armed bandit task-a standard setup in cognitive neuroscience. To gain insights into the belief dynamics, we analogize it to the dynamics of an active particle subject to state-dependent noise and living in a two-dimensional space. This mapping allows an analytical description of learning-induced biases. We deeply explore the case of Q-learning with forgetting the nonchosen option. In this case, learning-induced risk aversion is formally equivalent to standard thermophoresis, i.e., the net motion towards low-temperature regions. Finally, we quantify the irreversibility of belief dynamics in the steady state for different bandit configurations, sensitivity levels, and exploitative behavior. We found a strong correlation in high-sensitivity learning between heightened irreversibility in belief dynamics and improved decision-making outcomes. Notably, as the task's difficulty increases, a greater degree of irreversibility in belief dynamics becomes necessary for having superior performances; this explicitly unravels a plausible connection between time irreversibility and cognitive effort. In conclusion, our investigation reveals that irreversibility in belief dynamics bridges out-of-equilibrium statistical physics concepts and cognitive neuroscience. In decision-making contexts, this perspective offers insights into the notion of cognitive effort, suggesting a potential mechanism driving the evolution of living systems toward out-of-equilibrium structures.
Collapse
|
4
|
Papo D, Buldú JM. Does the brain behave like a (complex) network? I. Dynamics. Phys Life Rev 2024; 48:47-98. [PMID: 38145591 DOI: 10.1016/j.plrev.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Graph theory is now becoming a standard tool in system-level neuroscience. However, endowing observed brain anatomy and dynamics with a complex network structure does not entail that the brain actually works as a network. Asking whether the brain behaves as a network means asking whether network properties count. From the viewpoint of neurophysiology and, possibly, of brain physics, the most substantial issues a network structure may be instrumental in addressing relate to the influence of network properties on brain dynamics and to whether these properties ultimately explain some aspects of brain function. Here, we address the dynamical implications of complex network, examining which aspects and scales of brain activity may be understood to genuinely behave as a network. To do so, we first define the meaning of networkness, and analyse some of its implications. We then examine ways in which brain anatomy and dynamics can be endowed with a network structure and discuss possible ways in which network structure may be shown to represent a genuine organisational principle of brain activity, rather than just a convenient description of its anatomy and dynamics.
Collapse
Affiliation(s)
- D Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy; Center for Translational Neurophysiology, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy.
| | - J M Buldú
- Complex Systems Group & G.I.S.C., Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
5
|
Idesis S, Geli S, Faskowitz J, Vohryzek J, Sanz Perl Y, Pieper F, Galindo-Leon E, Engel AK, Deco G. Functional hierarchies in brain dynamics characterized by signal reversibility in ferret cortex. PLoS Comput Biol 2024; 20:e1011818. [PMID: 38241383 PMCID: PMC10836715 DOI: 10.1371/journal.pcbi.1011818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/02/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Brain signal irreversibility has been shown to be a promising approach to study neural dynamics. Nevertheless, the relation with cortical hierarchy and the influence of different electrophysiological features is not completely understood. In this study, we recorded local field potentials (LFPs) during spontaneous behavior, including awake and sleep periods, using custom micro-electrocorticographic (μECoG) arrays implanted in ferrets. In contrast to humans, ferrets remain less time in each state across the sleep-wake cycle. We deployed a diverse set of metrics in order to measure the levels of complexity of the different behavioral states. In particular, brain irreversibility, which is a signature of non-equilibrium dynamics, captured by the arrow of time of the signal, revealed the hierarchical organization of the ferret's cortex. We found different signatures of irreversibility and functional hierarchy of large-scale dynamics in three different brain states (active awake, quiet awake, and deep sleep), showing a lower level of irreversibility in the deep sleep stage, compared to the other. Irreversibility also allowed us to disentangle the influence of different cortical areas and frequency bands in this process, showing a predominance of the parietal cortex and the theta band. Furthermore, when inspecting the embedded dynamic through a Hidden Markov Model, the deep sleep stage was revealed to have a lower switching rate and lower entropy production. These results suggest functional hierarchies in organization that can be revealed through thermodynamic features and information theory metrics.
Collapse
Affiliation(s)
- Sebastian Idesis
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
| | - Sebastián Geli
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Jakub Vohryzek
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
| | - Yonatan Sanz Perl
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Florian Pieper
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Edgar Galindo-Leon
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Le Bihan D. From Black Holes Entropy to Consciousness: The Dimensions of the Brain Connectome. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1645. [PMID: 38136525 PMCID: PMC10743094 DOI: 10.3390/e25121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
It has been shown that the theory of relativity can be applied physically to the functioning brain, so that the brain connectome should be considered as a four-dimensional spacetime entity curved by brain activity, just as gravity curves the four-dimensional spacetime of the physical world. Following the most recent developments in modern theoretical physics (black hole entropy, holographic principle, AdS/CFT duality), we conjecture that consciousness can naturally emerge from this four-dimensional brain connectome when a fifth dimension is considered, in the same way that gravity emerges from a 'flat' four-dimensional quantum world, without gravitation, present at the boundaries of a five-dimensional spacetime. This vision makes it possible to envisage quantitative signatures of consciousness based on the entropy of the connectome and the curvature of spacetime estimated from data obtained by fMRI in the resting state (nodal activity and functional connectivity) and constrained by the anatomical connectivity derived from diffusion tensor imaging.
Collapse
Affiliation(s)
- Denis Le Bihan
- NeuroSpin, Frédéric Joliot Institute for Life Sciences (Commissariat à l’Energie Atomique, CEA), Centre d’Études de Saclay, Paris-Saclay University, Bâtiment 145, 91191 Gif-sur-Yvette, France;
- Human Brain Research Center, Kyoto University, Kyoto 606-8501, Japan
- Department of System Neuroscience, National Institutes for Physiological Sciences, Okazaki 444-8585, Japan
| |
Collapse
|
7
|
Barrera G, Högele MA. Ergodicity bounds for stable Ornstein-Uhlenbeck systems in Wasserstein distance with applications to cutoff stability. CHAOS (WOODBURY, N.Y.) 2023; 33:113124. [PMID: 37975874 DOI: 10.1063/5.0164204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
This article establishes cutoff stability also known as abrupt thermalization for generic multidimensional Hurwitz stable Ornstein-Uhlenbeck systems with (possibly degenerate) Lévy noise at fixed noise intensity. The results are based on several ergodicity quantitative lower and upper bounds some of which make use of the recently established shift linearity property of the Wasserstein-Kantorovich-Rubinstein distance by the authors. It covers such irregular systems like Jacobi chains and more general networks of coupled harmonic oscillators with a heat bath (including Lévy excitations) at constant temperature on the outer edges and the so-called Brownian gyrator.
Collapse
Affiliation(s)
- Gerardo Barrera
- Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Pietari Kalmin katu 5, FI-00014 Helsinki, Finland
| | - Michael A Högele
- Departamento de Matemáticas, Universidad de los Andes, Facultad de Ciencias, Cra 1 # 18A - 12, 111711 Bogotá, Colombia
| |
Collapse
|