1
|
Huang J, Shao ZG. Collective motion of binary chiral particle mixtures with environmental complex noise. Phys Rev E 2024; 110:034135. [PMID: 39425437 DOI: 10.1103/physreve.110.034135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024]
Abstract
The strategies for demixing and sorting mixed-chirality particles are crucial in the biochemical and pharmaceutical industries. However, whether chiral mixed particles can effectively separate in more complex spatial environments remains unresolved. In this paper, we explore the collective motion of binary chiral particle mixtures with environmental complex noise in the binary chiral Vicsek model (BCVM). We discover that the noisy region ratio, λ, significantly influences the separation behavior and spatial distribution of binary mixtures, unveiling system states not observed in uniform environments. Additionally, varying the chirality of particles reveals four distinct phases in our model. In the Vicsek bands phase (small chirality), an increase in λ can, under certain conditions, promote segregation rather than consistently hindering the demixing process. Conversely, for large chirality, localized dynamics and a homogeneous phase emerge, reducing the impact of λ on separation behavior. Notably, when chirality and activity are comparable, macrodrops and microflock phases appear, with a mixed-segregated state transition occurring at a critical λ_{c}. For λ<λ_{c}, chiral separation occurs with particles confined to the noise-free region. However, when λ>λ_{c}, particles gradually migrate to the noisy region, disrupting the separation. Further, we discuss the effects of multiple factors, including chirality, velocity, noise magnitude, particle number, and system size on λ_{c}. We also identify an optimal interaction radius at which λ_{c} reaches its peak value. Our findings may inspire strategies for achieving spontaneous demixing and spatial migration of mixed-chirality particles in complex environments.
Collapse
Affiliation(s)
- Jun Huang
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Zhi-Gang Shao
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
2
|
Bandyopadhyay S, Chatterjee S, Dutta AK, Karmakar M, Rieger H, Paul R. Ordering kinetics in the active Ising model. Phys Rev E 2024; 109:064143. [PMID: 39020881 DOI: 10.1103/physreve.109.064143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
We undertake a numerical study of the ordering kinetics in the two-dimensional (2D) active Ising model (AIM), a discrete flocking model with a conserved density field coupled to a nonconserved magnetization field. We find that for a quench into the liquid-gas coexistence region and in the ordered liquid region, the characteristic length scale of both the density and magnetization domains follows the Lifshitz-Cahn-Allen growth law, R(t)∼t^{1/2}, consistent with the growth law of passive systems with scalar order parameter and nonconserved dynamics. The system morphology is analyzed with the two-point correlation function and its Fourier transform, the structure factor, which conforms to the well-known Porod's law, a manifestation of the coarsening of compact domains with smooth boundaries. We also find the domain growth exponent unaffected by different noise strengths and self-propulsion velocities of the active particles. However, transverse diffusion is found to play the most significant role in the growth kinetics of the AIM. We extract the same growth exponent by solving the hydrodynamic equations of the AIM.
Collapse
|
3
|
Chen J, Lei X, Xiang Y, Duan M, Peng X, Zhang HP. Emergent Chirality and Hyperuniformity in an Active Mixture with Nonreciprocal Interactions. PHYSICAL REVIEW LETTERS 2024; 132:118301. [PMID: 38563944 DOI: 10.1103/physrevlett.132.118301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
We investigate collective dynamics in a binary mixture of programmable robots in experiments and simulations. While robots of the same species align their motion direction, interaction between species is distinctly nonreciprocal: species A aligns with B and species B antialigns with A. This nonreciprocal interaction gives rise to the emergence of collective chiral motion that can be stabilized by limiting the robot angular speed to be below a threshold. Within the chiral phase, increasing the robot density or extending the range of local repulsive interactions can drive the system through an absorbing-active transition. At the transition point, the robots exhibit a remarkable capacity for self-organization, forming disordered hyperuniform states.
Collapse
Affiliation(s)
- Jianchao Chen
- School of Physics and Astronomy, Institute of Natural Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaokang Lei
- Faculty of Electronic and Information Engineering, and MOE Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, 710049, China
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yalun Xiang
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mengyuan Duan
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xingguang Peng
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - H P Zhang
- School of Physics and Astronomy, Institute of Natural Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Woo CU, Noh JD. Nonequilibrium phase transitions in a Brownian p-state clock model. Phys Rev E 2024; 109:014105. [PMID: 38366398 DOI: 10.1103/physreve.109.014105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/08/2023] [Indexed: 02/18/2024]
Abstract
We introduce a Brownian p-state clock model in two dimensions and investigate the nature of phase transitions numerically. As a nonequilibrium extension of the equilibrium lattice model, the Brownian p-state clock model allows spins to diffuse randomly in the two-dimensional space of area L^{2} under periodic boundary conditions. We find three distinct phases for p>4: a disordered paramagnetic phase, a quasi-long-range-ordered critical phase, and an ordered ferromagnetic phase. In the intermediate critical phase, the magnetization order parameter follows a power-law scaling m∼L^{-β[over ̃]}, where the finite-size scaling exponent β[over ̃] varies continuously. These critical behaviors are reminiscent of the double Berezinskii-Kosterlitz-Thouless (BKT) transition picture of the equilibrium system. At the transition to the disordered phase, the exponent takes the universal value β[over ̃]=1/8, which coincides with that of the equilibrium system. This result indicates that the BKT transition driven by the unbinding of topological excitations is robust against the particle diffusion. On the contrary, the exponent at the symmetry-breaking transition to the ordered phase deviates from the universal value β[over ̃]=2/p^{2} of the equilibrium system. The deviation is attributed to a nonequilibrium effect from the particle diffusion.
Collapse
Affiliation(s)
- Chul-Ung Woo
- Department of Physics, University of Seoul, Seoul 02504, Korea
| | - Jae Dong Noh
- Department of Physics, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
5
|
Tan P, Miles CE. Intrinsic statistical separation of subpopulations in heterogeneous collective motion via dimensionality reduction. Phys Rev E 2024; 109:014403. [PMID: 38366514 DOI: 10.1103/physreve.109.014403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/12/2023] [Indexed: 02/18/2024]
Abstract
Collective motion of locally interacting agents is found ubiquitously throughout nature. The inability to probe individuals has driven longstanding interest in the development of methods for inferring the underlying interactions. In the context of heterogeneous collectives, where the population consists of individuals driven by different interactions, existing approaches require some knowledge about the heterogeneities or underlying interactions. Here, we investigate the feasibility of identifying the identities in a heterogeneous collective without such prior knowledge. We numerically explore the behavior of a heterogeneous Vicsek model and find sufficiently long trajectories intrinsically cluster in a principal component analysis-based dimensionally reduced model-agnostic description of the data. We identify how heterogeneities in each parameter in the model (interaction radius, noise, population proportions) dictate this clustering. Finally, we show the generality of this phenomenon by finding similar behavior in a heterogeneous D'Orsogna model. Altogether, our results establish and quantify the intrinsic model-agnostic statistical disentanglement of identities in heterogeneous collectives.
Collapse
Affiliation(s)
- Pei Tan
- Mathematical, Computational, and Systems Biology Graduate Program, University of California, Irvine 92697, USA
| | | |
Collapse
|
6
|
Maity S, Morin A. Spontaneous Demixing of Binary Colloidal Flocks. PHYSICAL REVIEW LETTERS 2023; 131:178304. [PMID: 37955477 DOI: 10.1103/physrevlett.131.178304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/05/2023] [Indexed: 11/14/2023]
Abstract
Population heterogeneity is ubiquitous among active living systems, but little is known about its role in determining their spatial organization and large-scale dynamics. Combining evidence from synthetic active fluids assembled from self-propelled colloidal particles along with theoretical predictions at the continuum scale, we demonstrate the spontaneous demixing of binary polar liquids within circular confinement. Our analysis reveals how both active speed heterogeneity and nonreciprocal repulsive interactions lead to self-sorting behavior. By establishing general principles for the self-organization of binary polar liquids, our findings highlight the specificity of multicomponent active systems.
Collapse
Affiliation(s)
- Samadarshi Maity
- Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, P.O. Box 9504, 2300 RA Leiden, Netherlands
| | - Alexandre Morin
- Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, P.O. Box 9504, 2300 RA Leiden, Netherlands
| |
Collapse
|
7
|
Meyer H, Rieger H. Alignment interaction and band formation in assemblies of autochemorepulsive walkers. Phys Rev E 2023; 108:034604. [PMID: 37849087 DOI: 10.1103/physreve.108.034604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/18/2023] [Indexed: 10/19/2023]
Abstract
Chemotaxis refers to the motion of an organism induced by chemical stimuli and is a motility mode shared by many living species that has been developed by evolution to optimize certain biological processes such as foraging or immune response. In particular, autochemotaxis refers to chemotaxis mediated by a cue produced by the chemotactic particle itself. Here, we investigate the collective behavior of autochemotactic particles that are repelled by the cue and therefore migrate preferentially towards low-concentration regions. To this end, we introduce a lattice model inspired by the true self-avoiding walk which reduces to the Keller-Segel model in the continuous limit, for which we describe the rich phase behavior. We first rationalize the chemically mediated alignment interaction between walkers in the limit of stationary concentration fields, and then describe the various large-scale structures that can spontaneously form and the conditions for them to emerge, among which we find stable bands traveling at constant speed in the direction transverse to the band.
Collapse
Affiliation(s)
- Hugues Meyer
- Department of Theoretical Physics & Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Heiko Rieger
- Department of Theoretical Physics & Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| |
Collapse
|