Pandit A, Dasanna AK, Sinha S. Multifractal analysis of HIV-1 genomes.
Mol Phylogenet Evol 2011;
62:756-63. [PMID:
22155711 DOI:
10.1016/j.ympev.2011.11.017]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 10/29/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
Abstract
Pathogens like HIV-1, which evolve into many closely related variants displaying differential infectivity and evolutionary dynamics in a short time scale, require fast and accurate classification. Conventional whole genome sequence alignment-based methods are computationally expensive and involve complex analysis. Alignment-free methodologies are increasingly being used to effectively differentiate genomic variations between viral species. Multifractal analysis, which explores the self-similar nature of genomes, is an alignment-free methodology that has been applied to study such variations. However, whether multifractal analysis can quantify variations between closely related genomes, such as the HIV-1 subtypes, is an open question. Here we address the above by implementing the multifractal analysis on four retroviral genomes (HIV-1, HIV-2, SIVcpz, and HTLV-1), and demonstrate that individual multifractal properties can differentiate between different retrovirus types easily. However, the individual multifractal measures do not resolve within-group variations for different known subtypes of HIV-1 M group. We show here that these known subtypes can instead be classified correctly using a combination of the crucial multifractal measures. This method is simple and computationally fast in comparison to the conventional alignment-based methods for whole genome phylogenetic analysis.
Collapse