Sahimi M. Physics-informed and data-driven discovery of governing equations for complex phenomena in heterogeneous media.
Phys Rev E 2024;
109:041001. [PMID:
38755895 DOI:
10.1103/physreve.109.041001]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Indexed: 05/18/2024]
Abstract
Rapid evolution of sensor technology, advances in instrumentation, and progress in devising data-acquisition software and hardware are providing vast amounts of data for various complex phenomena that occur in heterogeneous media, ranging from those in atmospheric environment, to large-scale porous formations, and biological systems. The tremendous increase in the speed of scientific computing has also made it possible to emulate diverse multiscale and multiphysics phenomena that contain elements of stochasticity or heterogeneity, and to generate large volumes of numerical data for them. Thus, given a heterogeneous system with annealed or quenched disorder in which a complex phenomenon occurs, how should one analyze and model the system and phenomenon, explain the data, and make predictions for length and time scales much larger than those over which the data were collected? We divide such systems into three distinct classes. (i) Those for which the governing equations for the physical phenomena of interest, as well as data, are known, but solving the equations over large length scales and long times is very difficult. (ii) Those for which data are available, but the governing equations are only partially known, in the sense that they either contain various coefficients that must be evaluated based on the data, or that the number of degrees of freedom of the system is so large that deriving the complete equations is very difficult, if not impossible, as a result of which one must develop the governing equations with reduced dimensionality. (iii) In the third class are systems for which large amounts of data are available, but the governing equations for the phenomena of interest are not known. Several classes of physics-informed and data-driven approaches for analyzing and modeling of the three classes of systems have been emerging, which are based on machine learning, symbolic regression, the Koopman operator, the Mori-Zwanzig projection operator formulation, sparse identification of nonlinear dynamics, data assimilation combined with a neural network, and stochastic optimization and analysis. This perspective describes such methods and the latest developments in this highly important and rapidly expanding area and discusses possible future directions.
Collapse