Qiu Q, Bao JD. Debye Brownian oscillator and Debye-type noise: A series solution versus Monte Carlo simulation.
Phys Rev E 2021;
104:014114. [PMID:
34412352 DOI:
10.1103/physreve.104.014114]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/21/2021] [Indexed: 11/07/2022]
Abstract
For the Debye Brownian oscillator, we present a series solution to the generalized Langevin equation describing the motion of a particle. The external potential is considered to be a harmonic potential and the spectral density of driven noise is a hard cutoff at high finite frequencies. The results are in agreement with both numerical calculations and Monte Carlo simulations. We demonstrate abnormal weak ergodic breaking; specifically, the long-time average of the observable vanishes but the corresponding ensemble average continues to oscillate with time. This Debye Brownian oscillator does not arrive at an equilibrium state and undergoes underdamped-like motion for any model parameter. Nevertheless, ergodic behavior and equilibrium can be recovered concurrently using a strong bound potential. We give an understanding of the behavior as being the consequence of discrete breather modes in the lattices similar to the formation of an additional periodic signal. Furthermore, we compare the results calculated by cutting off separately the spectral density and the correlation function of colored noise.
Collapse