Clerc MG, Elías RG, Rojas RG. Continuous description of lattice discreteness effects in front propagation.
PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011;
369:412-424. [PMID:
21149380 DOI:
10.1098/rsta.2010.0255]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Models describing microscopic or mesoscopic phenomena in physics are inherently discrete, where the lattice spacing between fundamental components, such as in the case of atomic sites, is a fundamental physical parameter. The effect of spatial discreteness over front propagation phenomenon in an overdamped one-dimensional periodic lattice is studied. We show here that the study of front propagation leads in a discrete description to different conclusions that in the case of its, respectively, continuous description, and also that the results of the discrete model, can be inferred by effective continuous equations with a supplementary spatially periodic term that we have denominated Peierls-Nabarro drift, which describes the bifurcation diagram of the front speed, the appearance of particle-type solutions and their snaking bifurcation diagram. Numerical simulations of the discrete equation show quite good agreement with the phenomenological description.
Collapse