Zhu YJ, Ma YQ. Fast growth in phase-separating A-B-copolymer ternary mixtures with a chemical reaction.
PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2003;
67:021804. [PMID:
12636705 DOI:
10.1103/physreve.67.021804]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Indexed: 05/24/2023]
Abstract
We study the dynamics of phase separation of a binary A-B- polymer mixture with copolymer C, which is produced by the reaction of two counterpart reactive polymers A and B at the interface via the chemical reaction A+B right harpoon over left harpoon C. For low interfacial energy between the A and B phases, where the copolymer prefers to locate at interfaces, we show that the chemical reaction accelerates the phase separation of the system dramatically, because the backward reaction always drives the creation of immiscible A and B pairs at interfaces, which speed up the phase separation of the system, while the forward reaction process becomes more and more difficult as the interfaces are gradually saturated by copolymers. We also indicate that for a fixed chemical reaction rate constant, as the initial concentration of the copolymers increases, the domain growth at the late stage is speeded up as a result of the backward chemical reaction. However, when the interfacial energy is high, both forward and backward reactions coexist due to the occurrence of unsaturated interfaces, but the relative strength of reaction rates has no appreciable effect on domain growth during spinodal decomposition, because the interfacial energy dominates phase separation.
Collapse