Calvo F. Role of inertial forces on the chaotic dynamics of flexible rotating bodies.
Phys Rev E 2013;
87:022901. [PMID:
23496585 DOI:
10.1103/physreve.87.022901]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Indexed: 11/07/2022]
Abstract
The nonlinear dynamics of isolated flexible but rotating many-body atomic systems is theoretically investigated, following the dependence on initial conditions through Lyapunov exponents. The tangent-space equations of motion that rule the time evolution of such small perturbations are rewritten in the rotating reference frame, and the various contributions of the centrifugal, Coriolis, and Euler forces are determined. Evaluating the largest Lyapunov in the rotating frame under various approximations, we show on the example of Lennard-Jones clusters that the dynamics in phase space is qualitatively at variance with the effective dynamics on the centrifugal energy surface. Coupling terms between positions and momenta in phase space, especially arising from the Coriolis force, are essential to recover the measure of chaos in the fixed reference frame.
Collapse