Mobilia M, Bares PA. Generalized empty-interval method applied to a class of one-dimensional stochastic models.
PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2001;
64:066123. [PMID:
11736252 DOI:
10.1103/physreve.64.066123]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Indexed: 05/23/2023]
Abstract
In this work we study, on a finite and periodic lattice, a class of one-dimensional (bimolecular and single-species) reaction-diffusion models that cannot be mapped onto free-fermion models. We extend the conventional empty-interval method, also called interparticle distribution function (IPDF) method, by introducing a string function, which is simply related to relevant physical quantities. As an illustration, we specifically consider a model that cannot be solved directly by the conventional IPDF method and that can be viewed as a generalization of the voter model and/or as an epidemic model. We also consider the reversible diffusion-coagulation model with input of particles and determine other reaction-diffusion models that can be mapped onto the latter via suitable similarity transformations. Finally we study the problem of the propagation of a wave front from an inhomogeneous initial configuration and note that the mean-field scenario predicted by Fisher's equation is not valid for the one-dimensional (microscopic) models under consideration.
Collapse