Georg S, Kabuss J, Weidinger IM, Murgida DH, Hildebrandt P, Knorr A, Richter M. Distance-dependent electron transfer rate of immobilized redox proteins: a statistical physics approach.
PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010;
81:046101. [PMID:
20481780 DOI:
10.1103/physreve.81.046101]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/18/2010] [Indexed: 05/29/2023]
Abstract
The electron transfer kinetics of redox proteins adsorbed on metal electrodes coated with self-assembled monolayers (SAMs) of mercaptanes shows an unusual distance-dependence. For thick SAMs, the experimentally measured electron transfer rate constant k{exp} obeys the behavior predicted by Marcus theory [R. A. Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985)], whereas for thin SAMs, k{exp} remains virtually constant [Z. Q. Feng, J. Chem. Soc., Faraday Trans. 93, 1367 (1997)]. In this work, we present a simple theoretical model system for the redox protein cytochrome c electrostatically bound to a SAM-coated electrode. A statistical average of the electron tunneling rate is calculated by accounting for all possible orientations of the model protein. This approach, which takes into account the electric field dependent orientational distribution, allows for a satisfactory description of the "saturation" regime in the high electric field limit. It further predicts a nonexponential behavior of the average electron transfer processes that may be experimentally checked by extending kinetic experiments to shorter sampling times, i.e., 1/k{exp}. For a comprehensive description of the overall kinetics in the saturation regime at sampling times of the order of <<1/k{exp}, it is essential to consider the dynamics of protein reorientation, which is not implemented in the present model.
Collapse