1
|
Ding Y, Cardoso SSS, Cartwright JHE. Dynamics of the osmotic lysis of mineral protocells and its avoidance at the origins of life. GEOBIOLOGY 2024; 22:e12611. [PMID: 39020475 DOI: 10.1111/gbi.12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
The osmotic rupture of a cell, its osmotic lysis or cytolysis, is a phenomenon that active biological cell volume regulation mechanisms have evolved in the cell membrane to avoid. How then, at the origin of life, did the first protocells survive prior to such active processes? The pores of alkaline hydrothermal vents in the oceans form natural nanoreactors in which osmosis across a mineral membrane plays a fundamental role. Here, we discuss the dynamics of lysis and its avoidance in an abiotic system without any active mechanisms, reliant upon self-organized behaviour, similar to the first self-organized mineral membranes within which complex chemistry may have begun to evolve into metabolism. We show that such mineral nanoreactors could function as protocells without exploding because their self-organized dynamics have a large regime in parameter space where osmotic lysis does not occur and homeostasis is possible. The beginnings of Darwinian evolution in proto-biochemistry must have involved the survival of protocells that remained within such a safe regime.
Collapse
Affiliation(s)
- Yang Ding
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Silvana S S Cardoso
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Julyan H E Cartwright
- Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Granada, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| |
Collapse
|
2
|
de Chateauneuf-Randon S, Bresson B, Ripoll M, Huille S, Barthel E, Monteux C. The mechanical properties of lipid nanoparticles depend on the type of biomacromolecule they are loaded with. NANOSCALE 2024; 16:10706-10714. [PMID: 38700424 DOI: 10.1039/d3nr06543j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
For drug delivery systems, the mechanical properties of drug carriers are suspected to play a crucial role in the delivery process. However, there is a lack of reliable methods available to measure the mechanical properties of drug carriers, which hampers the establishment of a link between delivery efficiency and the mechanical properties of carriers. Lipid nanoparticles (LNPs) are advanced systems for delivering nucleic acids to target cell populations for vaccination purposes (mRNA) or the development of new drugs. Hence, it is crucial to develop reliable techniques to measure the mechanical properties of LNPs. In this article, we used AFM to image and probe the mechanical properties of LNPs which are loaded with two different biopolymers either pDNA or mRNA. Imaging the LNPs before and after indentation, as well as recording the retraction curve, enables us to obtain more insight into how the AFM tip penetrates into the particle and to determine whether the deformation of the LNPs is reversible. For pDNA, the indentation by the tip leads to irreversible rupture of the LNPs, while the deformation is reversible for the mRNA-loaded LNPs. Moreover, the forces reached for pDNA are higher than for mRNA. These results pave the way toward the establishment of the link between the LNP formulation and the delivery efficiency.
Collapse
Affiliation(s)
- Sixtine de Chateauneuf-Randon
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, PSL University, Sorbonne University, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| | - Bruno Bresson
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, PSL University, Sorbonne University, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| | - Manon Ripoll
- Sanofi Pasteur, 1541 av Marcel Mérieux, 69280 Marcy l'Etoile, France.
| | - Sylvain Huille
- Sanofi R & D, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France.
| | - Etienne Barthel
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, PSL University, Sorbonne University, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| | - Cécile Monteux
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, PSL University, Sorbonne University, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| |
Collapse
|
3
|
Sambre P, Ho JCS, Parikh AN. Intravesicular Solute Delivery and Surface Area Regulation in Giant Unilamellar Vesicles Driven by Cycles of Osmotic Stresses. J Am Chem Soc 2024; 146:3250-3261. [PMID: 38266489 PMCID: PMC10859933 DOI: 10.1021/jacs.3c11679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024]
Abstract
Phospholipid bilayers are dynamic cellular components that undergo constant changes in their topology, facilitating a broad diversity of physiological functions including endo- and exocytosis, cell division, and intracellular trafficking. These shape transformations consume energy, supplied invariably by the activity of proteins. Here, we show that cycles of oppositely directed osmotic stresses─unassisted by any protein activity─can induce well-defined remodeling of giant unilamellar vesicles, minimally recapitulating the phenomenologies of surface area homeostasis and macropinocytosis. We find that a stress cycle consisting of deflationary hypertonic stress followed by an inflationary hypotonic one prompts an elaborate sequence of membrane shape changes ultimately transporting molecular cargo from the outside into the intravesicular milieu. The initial osmotic deflation produces microscopic spherical invaginations. During the subsequent inflation, the first subpopulation contributes area to the swelling membrane, thereby providing a means for surface area regulation and tensional homeostasis. The second subpopulation vesiculates into the lumens of the mother vesicles, producing pinocytic vesicles. Remarkably, the gradients of solute concentrations between the GUV and the daughter pinocytic vesicles create cascades of water current, inducing pulsatory transient poration that enable solute exchange between the buds and the GUV interior. This results in an efficient water-flux-mediated delivery of molecular cargo across the membrane boundary. Our findings suggest a primitive physical mechanism for communication and transport across protocellular compartments driven only by osmotic stresses. They also suggest plausible physical routes for intravesicular, and possibly intracellular, delivery of ions, solutes, and molecular cargo stimulated simply by cycles of osmotic currents of water.
Collapse
Affiliation(s)
- Pallavi
D. Sambre
- Department
of Materials Science and Engineering, University
of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - James C. S. Ho
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore
- Institute
for Digital Molecular Analytics and Science, Nanyang Technological University, 60 Nanyang Drive, 637551Singapore
| | - Atul N. Parikh
- Department
of Materials Science and Engineering, University
of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore
- Institute
for Digital Molecular Analytics and Science, Nanyang Technological University, 60 Nanyang Drive, 637551Singapore
- Department
of Biomedical Engineering, University of
California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
4
|
Chen L, Zhao H, Xue S, Chen K, Zhang Y. Effection of Lactic Acid Dissociation on Swelling-Based Short-Chain Fatty Acid Vesicles Nano-Delivery. Foods 2022; 11:foods11111630. [PMID: 35681380 PMCID: PMC9180077 DOI: 10.3390/foods11111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Functionalized small-molecule assemblies can exhibit nano-delivery properties that significantly improve the bioavailability of bioactive molecules. This study explored the self-assembly of short-chain fatty acids (FA, Cn < 8) to form novel biomimetic nanovesicles as delivery systems. Lactic acid is involved in the regulation of multiple signaling pathways in cancer metabolism, and the dissociation of lactic acid (LA) is used to regulate the delivery effect of short-chain fatty acid vesicles. The study showed that the dissociation of lactic acid caused pH changes in the solution environment inducing hydrogen ion permeability leading to rapid osmotic expansion and shape transformation of FA vesicles. The intrinsic features of FA vesicle formation in the LA environment accompanied by hydrogen ion fluctuations, and the appearance of nearly spherical vesicles were investigated by transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR). Compared with the vesicle membrane built by surfactants, the FA/LA composite system showed higher permeability and led to better membrane stability and rigidity. Finally, membrane potential studies with the IEC cell model demonstrate that lactate dissociation capacity can effectively increase the cellular adsorption of FA vesicles. Altogether, these results prove that FA vesicles can function as a stand-alone delivery system and also serve as potential development strategies for applications in a lactate environment.
Collapse
Affiliation(s)
- Lichun Chen
- Correspondence: ; Tel.: +86-137-7757-7107; Fax: +86-571-2800-8902
| | | | | | | | | |
Collapse
|
5
|
Lowe LA, Kindt JT, Cranfield C, Cornell B, Macmillan A, Wang A. Subtle changes in pH affect the packing and robustness of fatty acid bilayers. SOFT MATTER 2022; 18:3498-3504. [PMID: 35474126 DOI: 10.1039/d2sm00272h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Connecting molecular interactions to emergent properties is a goal of physical chemistry, self-assembly, and soft matter science. We show that for fatty acid bilayers, vesicle rupture tension, and permeability to water and ions are coupled to pH via alterations to lipid packing. A change in pH of one, for example, can halve the rupture tension of oleic acid membranes, an effect that is comparable to increasing lipid unsaturation in phospholipid systems. We use both experiments and molecular dynamics simulations to reveal that a subtle increase in pH can lead to increased water penetration, ion permeability, pore formation rates, and membrane disorder. For changes in membrane water content, oleic acid membranes appear to be more than a million times more sensitive to protons than to sodium ions. The work has implications for systems in which fatty acids are likely to be found, for example in the primitive cells on early Earth, biological membranes especially during digestion, and other biomaterials.
Collapse
Affiliation(s)
- Lauren A Lowe
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
- Australian Centre for Astrobiology, UNSW Sydney, NSW 2052, Australia
| | - James T Kindt
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Charles Cranfield
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bruce Cornell
- SDx Tethered Membranes Pty. Ltd., Unit 6, 30-32 Barcoo Street, Roseville, NSW 2069, Australia
| | | | - Anna Wang
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
- Australian Centre for Astrobiology, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Karal MAS, Ahamed MK, Ahmed M, Mahbub ZB. Recent developments in the kinetics of ruptures of giant vesicles under constant tension. RSC Adv 2021; 11:29598-29619. [PMID: 35479542 PMCID: PMC9040846 DOI: 10.1039/d1ra04647k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
External tension in membranes plays a vital role in numerous physiological and physicochemical phenomena. In this review, recent developments in the constant electric- and mechanical-tension-induced rupture of giant unilamellar vesicles (GUVs) are considered. We summarize the results relating to the kinetics of GUV rupture as a function of membrane surface charge, ions in the bathing solution, lipid composition, cholesterol content in the membrane, and osmotic pressure. The mechanical stability and line tension of the membrane under these conditions are discussed. The membrane tension due to osmotic pressure and the critical tension of rupture for various membrane compositions are also discussed. The results and their analysis provide a biophysical description of the kinetics of rupture, along with insight into biological processes. Future directions and possible developments in this research area are included.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Zaid Bin Mahbub
- Department of Mathematics and Physics, North South University Dhaka-1229 Bangladesh
| |
Collapse
|
7
|
Sarkar MK, Karal MAS, Ahmed M, Ahamed MK, Ahammed S, Sharmin S, Shibly SUA. Effects of osmotic pressure on the irreversible electroporation in giant lipid vesicles. PLoS One 2021; 16:e0251690. [PMID: 33989363 PMCID: PMC8121316 DOI: 10.1371/journal.pone.0251690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Irreversible electroporation (IRE) is a nonthermal tumor/cell ablation technique in which a series of high-voltage short pulses are used. As a new approach, we aimed to investigate the rupture of giant unilamellar vesicles (GUVs) using the IRE technique under different osmotic pressures (Π), and estimated the membrane tension due to Π. Two categories of GUVs were used in this study. One was prepared with a mixture of dioleoylphosphatidylglycerol (DOPG), dioleoylphosphatidylcholine (DOPC) and cholesterol (chol) for obtaining more biological relevance while other with a mixture of DOPG and DOPC, with specific molar ratios. We determined the rate constant (kp) of rupture of DOPG/DOPC/chol (46/39/15)-GUVs and DOPG/DOPC (40/60)-GUVs induced by constant electric tension (σc) under different Π. The σc dependent kp values were fitted with a theoretical equation, and the corresponding membrane tension (σoseq) at swelling equilibrium under Π was estimated. The estimated membrane tension agreed well with the theoretical calculation within the experimental error. Interestingly, the values of σoseq were almost same for both types of synthesized GUVs under same osmotic pressure. We also examined the sucrose leakage, due to large osmotic pressure-induced pore formation, from the inside of DOPG/DOPC/chol(46/39/15)-GUVs. The estimated membrane tension due to large Π at which sucrose leaked out was very similar to the electric tension at which GUVs were ruptured without Π. We explained the σc and Π induced pore formation in the lipid membranes of GUVs.
Collapse
Affiliation(s)
- Malay Kumar Sarkar
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Department of Arts and Sciences, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- * E-mail:
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Sabrina Sharmin
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Department of Arts and Sciences, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | | |
Collapse
|
8
|
Abstract
Lipid vesicles have received considerable interest because of their applications to in vitro reductionist cell membrane models as well as therapeutic delivery vehicles. In these contexts, the mechanical response of vesicles in nonequilibrium environments plays a key role in determining the corresponding dynamics. A common understanding of the response of lipid vesicles upon exposure to a hypotonic solution is a characteristic pulsatile behavior. Recent experiments, however, have shown vesicles exploding under an osmotic shock generated by photo-reactions, yet the explanatory mechanism is unknown. Here we present a generalized biophysical model incorporating a stochastic account of membrane rupture to describe both swell-burst-reseal cycling and exploding dynamics. This model agrees well with experimental observations, and it unravels that the sudden osmotic shock strains the vesicle at an extreme rate, driving the vesicle into buckling instabilities responsible for membrane fragmentation, i.e. explosion. Our work not only advances the fundamental framework for non-equilibrium vesicle dynamics under osmotic stress, but also offers design guidelines for programmable vesicle-encapsulated substance release in therapeutic carriers.
Collapse
Affiliation(s)
- Vinit Kumar Malik
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Sangwoo Shin
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
9
|
Saha SK, Alam Shibly SU, Yamazaki M. Membrane Tension in Negatively Charged Lipid Bilayers in a Buffer under Osmotic Pressure. J Phys Chem B 2020; 124:5588-5599. [DOI: 10.1021/acs.jpcb.0c03681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Samiron Kumar Saha
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Sayed Ul Alam Shibly
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
- Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka 422-8529, Japan
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
10
|
Flandez K, Bonardd S, Soto-Arriaza M. Physicochemical properties of L-alpha dipalmitoyl phosphatidylcholine large unilamellar vesicles: Effect of hydrophobic block (PLA/PCL) of amphipathic diblock copolymers. Chem Phys Lipids 2020; 230:104927. [PMID: 32454007 DOI: 10.1016/j.chemphyslip.2020.104927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/27/2020] [Accepted: 05/09/2020] [Indexed: 10/24/2022]
Abstract
In the present work, we show how amphipathic diblock copolymers affect the physicochemical properties of the lipid bilayer of DPPC liposome. Diblock copolymers proposed for this study are focused in the difference between PLA and PCL hydrophobic block, because PLA and PCL differ in their glass transition temperature, where a higher ratio of PLA, lowers the flexibility of the diblock copolymer. On the contrary, a greater proportion of PCL makes the diblock copolymer more flexible. This flexibility difference between hydrophobic block would affect the physicochemical properties of lipid bilayer of DPPC. The difference of rigidity or flexibility of hydrophobic block and their interaction with DPPC large unilamellar vesicles (LUVs) was evaluated at low and high copolymers concentration. The copolymer concentrations used were chosen based on their respective cmc. We measure (a) Thermotropic behavior from GP of Laurdan and fluorescence anisotropy of DPH; (b) Relation between wavelength excitation and generalized polarization of Laurdan; (c) Time-resolved fluorescence anisotropy of DPH; (d) Water outflow through the lipid bilayer and (e) calcein release from DPPC LUVs. Furthermore, large unilamellar vesicles in the absence and in the presence of different copolymers were characterized by size and zeta-potential. The results show that the diblock copolymer at high PLA/PCL ratio, that is, greater rigidity of hydrophobic block produces an increase of the phase transition temperature (Tm). For DPPC LUVs, Tm increase 3.5 °C at low and about 4.5 °C at high copolymers concentration, sensed by Laurdan and DPH fluorescent probes, although the DPPC/copolymers molar ratio for Cop4 is higher than Cop3, Cop2 and Cop1. In addition, we observed a decrease in the polarity of microenvironments in the bilayer and an increase in the order of the acyl chains in the bilayer to a high proportion of PLA. Furthermore, the presence of diblock copolymer with high proportion of PLA, decreases water outflow from DPPC liposome and water efflux is slower; leading to a decrease in calcein release from DPPC liposomes. Our results clearly show that the greater the stiffness of the hydrophobic block, greater degree of packaging of the lipid bilayer, greater the order of the acyl chains, and greater retention of water and calcein inside the liposome. Therefore, the presence of AB-type diblock copolymers with a more rigid hydrophobic block, stabilizes the lipid bilayer and would allow a more controlled release of water, and encapsulated molecules inside of the DPPC liposome.
Collapse
Affiliation(s)
- Karina Flandez
- Laboratorio de Biocoloides y Biointerfaces, Departamento de Química-Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Bonardd
- Facultad de Ciencias, Centro de Nanotecnología Aplicada, Universidad Mayor, Camino la Pirámide 5750, 8580745, Santiago, Chile
| | - Marco Soto-Arriaza
- Laboratorio de Biocoloides y Biointerfaces, Departamento de Química-Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Correo 22, C.P. 7820436 Santiago, Chile.
| |
Collapse
|
11
|
Imran A, Popescu D, Movileanu L. Cyclic Activity of an Osmotically Stressed Liposome in a Finite Hypotonic Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3659-3666. [PMID: 32186881 PMCID: PMC7147966 DOI: 10.1021/acs.langmuir.9b03923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A lipid vesicle, or simply called a liposome, represents a synthetic compartment for the examination of transmembrane transport and signaling phenomena. Yet, a liposome is always subjected to size and shape fluctuations due to local and global imbalance of internal and external osmotic pressures. Here, we show that an osmotically stressed liposome placed within a hypotonic spherical bath undergoes cyclic dynamics described by a periodic sequence of swelling and relaxation phases. These two phases are interfaced by the appearance of a transient transmembrane pore through which chemical delivery occurs. An analytical model was formulated for the recurrent differential equations that convey the time-dependent swelling phase of a pulsatory liposome during individual cycles. We demonstrate that the time-dependent swelling phases of the last several cycles of a pulsatory liposome are strongly dependent on the size of the external bath. Furthermore, decreasing the size of the hypotonic medium reduces the number of cycles of a pulsatory liposome. Comparisons and contrasts of an infinite hypotonic bath with finite external baths of varying radii are discussed.
Collapse
Affiliation(s)
- Ali Imran
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Dumitru Popescu
- Department of Mathematical Modelling in Life Sciences, Institute of Mathematical Statistics and Applied Mathematics, Calea 13 Septembrie, nr.13, Bucharest Romania
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
12
|
Colla T, Bakhshandeh A, Levin Y. Osmotic stress and pore nucleation in charged biological nanoshells and capsids. SOFT MATTER 2020; 16:2390-2405. [PMID: 32067009 DOI: 10.1039/c9sm02532d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A model system is proposed to investigate the chemical equilibrium and mechanical stability of biological spherical-like nanoshells in contact with an aqueous solution with added dissociated electrolyte of a given concentration. The ionic chemical equilibrium across the permeable shell is investigated in the framework of an accurate Density Functional Theory (DFT) that incorporates electrostatic and hardcore correlations beyond the traditional mean-field (e.g., Poisson-Boltzmann) limit. The accuracy of the theory is tested by a direct comparison with Monte Carlo (MC) simulations. A simple analytical expression is then deduced which clearly highlights the entropic, electrostatic, and self-energy contributions to the osmotic stress over the shell in terms of the calculated ionic profiles. By invoking a continuum mean-field elastic approach to account for the shell surface stress upon osmotic stretching, the mechanical equilibrium properties of the shell under a wide variety of ionic strengths and surface charges are investigated. The model is further coupled to a continuum mechanical approach similar in structure to a Classical Nucleation Theory (CNT) to address the question of mechanical stability of the shells against a pore nucleation. This allows us to construct a phase diagram which delimits the mechanical stability of capsids for different ionic strengths and shell surface charges.
Collapse
Affiliation(s)
- Thiago Colla
- Instituto de Física, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, MG, Brazil.
| | - Amin Bakhshandeh
- Programa de Pós-Graduação em Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900 Pelotas, RS, Brazil.
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Chabanon M, Rangamani P. Solubilization kinetics determines the pulsatory dynamics of lipid vesicles exposed to surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2032-2041. [PMID: 29572034 DOI: 10.1016/j.bbamem.2018.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 11/25/2022]
Abstract
We establish a biophysical model for the dynamics of lipid vesicles exposed to surfactants. The solubilization of the lipid membrane due to the insertion of surfactant molecules induces a reduction of membrane surface area at almost constant vesicle volume. This results in a rate-dependent increase of membrane tension and leads to the opening of a micron-sized pore. We show that solubilization kinetics due to surfactants can determine the regime of pore dynamics: either the pores open and reseal within a second (short-lived pore), or the pore stays open up to a few minutes (long-lived pore). First, we validate our model with previously published experimental measurements of pore dynamics. Then, we investigate how the solubilization kinetics and membrane properties affect the dynamics of the pore and construct a phase diagram for short and long-lived pores. Finally, we examine the dynamics of sequential pore openings and show that cyclic short-lived pores occur with a period inversely proportional to the solubilization rate. By deriving a theoretical expression for the cycle period, we provide an analytical tool to estimate the solubilization rate of lipid vesicles by surfactants. Our findings shed light on some fundamental biophysical mechanisms that allow simple cell-like structures to sustain their integrity against environmental stresses, and have the potential to aid the design of vesicle-based drug delivery systems. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Morgan Chabanon
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla 92093, CA, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla 92093, CA, USA.
| |
Collapse
|
14
|
Simulation of the osmosis-based drug encapsulation in erythrocytes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:261-270. [DOI: 10.1007/s00249-017-1255-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
|
15
|
Deviri D, Discher DE, Safran SA. Rupture Dynamics and Chromatin Herniation in Deformed Nuclei. Biophys J 2017; 113:1060-1071. [PMID: 28877489 PMCID: PMC5611675 DOI: 10.1016/j.bpj.2017.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022] Open
Abstract
During migration of cells in vivo, in both pathological processes such as cancer metastasis or physiological events such as immune cell migration through tissue, the cells must move through narrow interstitial spaces that can be smaller than the nucleus. This can induce deformation of the nucleus which, according to recent experiments, may result in rupture of the nuclear envelope that can lead to cell death, if not prevented or healed within an appropriate time. The nuclear envelope, which can be modeled as a double lipid bilayer attached to a viscoelastic gel (lamina) whose elasticity and viscosity primarily depend on the lamin composition, may utilize mechanically induced, self-healing mechanisms that allow the hole to be closed after the deformation-induced strains are reduced by leakage of the internal fluid. Here, we present a viscoelastic model of the evolution of a hole nucleated by deformations of the nuclear lamina and estimate the herniation of chromatin through the hole and its relation to the lamin expression levels in the nuclear envelope.
Collapse
Affiliation(s)
- Dan Deviri
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel.
| | - Dennis E Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sam A Safran
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Chabanon M, Ho JCS, Liedberg B, Parikh AN, Rangamani P. Pulsatile Lipid Vesicles under Osmotic Stress. Biophys J 2017; 112:1682-1691. [PMID: 28445759 DOI: 10.1016/j.bpj.2017.03.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/11/2017] [Accepted: 03/23/2017] [Indexed: 11/25/2022] Open
Abstract
The response of lipid bilayers to osmotic stress is an important part of cellular function. Recent experimental studies showed that when cell-sized giant unilamellar vesicles (GUVs) are exposed to hypotonic media, they respond to the osmotic assault by undergoing a cyclical sequence of swelling and bursting events, coupled to the membrane's compositional degrees of freedom. Here, we establish a fundamental and quantitative understanding of the essential pulsatile behavior of GUVs under hypotonic conditions by advancing a comprehensive theoretical model of vesicle dynamics. The model quantitatively captures the experimentally measured swell-burst parameters for single-component GUVs, and reveals that thermal fluctuations enable rate-dependent pore nucleation, driving the dynamics of the swell-burst cycles. We further extract constitutional scaling relationships between the pulsatile dynamics and GUV properties over multiple timescales. Our findings provide a fundamental framework that has the potential to guide future investigations on the nonequilibrium dynamics of vesicles under osmotic stress.
Collapse
Affiliation(s)
- Morgan Chabanon
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California
| | - James C S Ho
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bo Liedberg
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Atul N Parikh
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore; Departments of Biomedical Engineering and Chemical Engineering and Materials Science, University of California Davis, Davis, California
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
| |
Collapse
|
17
|
Alam Shibly SU, Ghatak C, Sayem Karal MA, Moniruzzaman M, Yamazaki M. Experimental Estimation of Membrane Tension Induced by Osmotic Pressure. Biophys J 2017; 111:2190-2201. [PMID: 27851942 DOI: 10.1016/j.bpj.2016.09.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/08/2023] Open
Abstract
Osmotic pressure (Π) induces the stretching of plasma membranes of cells or lipid membranes of vesicles, which plays various roles in physiological functions. However, there have been no experimental estimations of the membrane tension of vesicles upon exposure to Π. In this report, we estimated experimentally the lateral tension of the membranes of giant unilamellar vesicles (GUVs) when they were transferred into a hypotonic solution. First, we investigated the effect of Π on the rate constant, kp, of constant-tension (σex)-induced rupture of dioleoylphosphatidylcholine (DOPC)-GUVs using the method developed by us recently. We obtained the σex dependence of kp in GUVs under Π and by comparing this result with that in the absence of Π, we estimated the tension of the membrane due to Π at the swelling equilibrium, σosmeq. Next, we measured the volume change of DOPC-GUVs under small Π. The experimentally obtained values of σosmeq and the volume change agreed with their theoretical values within the limits of the experimental errors. Finally, we investigated the characteristics of the Π-induced pore formation in GUVs. The σosmeq corresponding to the threshold Π at which pore formation is induced is similar to the threshold tension of the σex-induced rupture. The time course of the radius change of GUVs in the Π-induced pore formation depends on the total membrane tension, σt; for small σt, the radius increased with time to an equilibrium one, which remained constant for a long time until pore formation, but for large σt, the radius increased with time and pore formation occurred before the swelling equilibrium was reached. Based on these results, we discussed the σosmeq and the Π-induced pore formation in lipid membranes.
Collapse
Affiliation(s)
- Sayed Ul Alam Shibly
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Chiranjib Ghatak
- Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka, Japan
| | - Mohammad Abu Sayem Karal
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Md Moniruzzaman
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan; Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka, Japan; Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
18
|
Interaction between amphipathic triblock copolymers and L-α-dipalmitoyl phosphatidylcholine large unilamellar vesicles. Colloids Surf B Biointerfaces 2016; 148:30-40. [DOI: 10.1016/j.colsurfb.2016.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022]
|
19
|
Abstract
Liquid crystals (LCs), because of their long-range molecular ordering, are anisotropic, elastic fluids. Herein, we report that elastic stresses imparted by nematic LCs can dynamically shape soft colloids and tune their physical properties. Specifically, we use giant unilamellar vesicles (GUVs) as soft colloids and explore the interplay of mechanical strain when the GUVs are confined within aqueous chromonic LC phases. Accompanying thermal quenching from isotropic to LC phases, we observe the elasticity of the LC phases to transform initially spherical GUVs (diameters of 2-50 µm) into two distinct populations of GUVs with spindle-like shapes and aspect ratios as large as 10. Large GUVs are strained to a small extent (R/r < 1.54, where R and r are the major and minor radii, respectively), consistent with an LC elasticity-induced expansion of lipid membrane surface area of up to 3% and conservation of the internal GUV volume. Small GUVs, in contrast, form highly elongated spindles (1.54 < R/r < 10) that arise from an efflux of LCs from the GUVs during the shape transformation, consistent with LC-induced straining of the membrane leading to transient membrane pore formation. A thermodynamic analysis of both populations of GUVs reveals that the final shapes adopted by these soft colloids are dominated by a competition between the LC elasticity and an energy (∼0.01 mN/m) associated with the GUV-LC interface. Overall, these results provide insight into the coupling of strain in soft materials and suggest previously unidentified designs of LC-based responsive and reconfigurable materials.
Collapse
|
20
|
Ikari K, Sakuma Y, Jimbo T, Kodama A, Imai M, Monnard PA, Rasmussen S. Dynamics of fatty acid vesicles in response to pH stimuli. SOFT MATTER 2015; 11:6327-6334. [PMID: 26166464 DOI: 10.1039/c5sm01248a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigate the dynamics of decanoic acid/decanoate (DA) vesicles in response to pH stimuli. Two types of dynamic processes induced by the micro-injection of NaOH solutions are sequentially observed: deformations and topological transitions. In the deformation stage, DA vesicles show a series of shape deformations, i.e., prolate-oblate-stomatocyte-sphere. In the topological transition stage, spherical DA vesicles follow either of the two pathways, pore formation and vesicle fusion. The pH stimuli modify a critical aggregation concentration of DA molecules, which causes the solubilization of DA molecules in the outer leaflet of the vesicle bilayers. This solubilization decreases the outer surface area of the vesicle, thereby increasing surface tension. A kinetic model based on area difference elasticity theory can accurately describe the dynamics of DA vesicles triggered by pH stimuli.
Collapse
Affiliation(s)
- Keita Ikari
- Department of Physics, Tohoku University, Aramaki, Aoba, Sendai 980-8578, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Response of unilamellar DPPC and DPPC:SM vesicles to hypo and hyper osmotic shocks: A comparison. Chem Phys Lipids 2015; 188:54-60. [DOI: 10.1016/j.chemphyslip.2015.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 11/17/2022]
|
22
|
Oglęcka K, Rangamani P, Liedberg B, Kraut RS, Parikh AN. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials. eLife 2014; 3:e03695. [PMID: 25318069 PMCID: PMC4197780 DOI: 10.7554/elife.03695] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/19/2014] [Indexed: 01/14/2023] Open
Abstract
Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell-burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition--resulting from a well-coordinated sequence of mechanochemical events--suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment.
Collapse
Affiliation(s)
- Kamila Oglęcka
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore
| | - Padmini Rangamani
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, United States
| | - Bo Liedberg
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang, Singapore
| | - Rachel S Kraut
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore
| | - Atul N Parikh
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang, Singapore
| |
Collapse
|
23
|
Yan LT, Yu X. Complexes comprised of a dendrimer and a vesicle: role of vesicle size and the surface tension of the vesicle membrane. NANOSCALE 2011; 3:3812-3818. [PMID: 21822512 DOI: 10.1039/c1nr10446b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mesoscale simulations are performed to study the complexes between a dendrimer and a vesicle of amphiphilic molecules. In particular, the assembled structures and dynamics of these complexes are investigated by tuning vesicle size and the surface tension of vesicle membrane. Our simulations demonstrate that a dendrimer-based bulge containing amphiphilic molecules forms in the vesicle membrane when a dendrimer adheres to a vesicle. We find that vesicle size and the surface tension of the vesicle membrane permit effective accesses to control the shape change of the bulge structure with respect to various hydrophobic interactions in the complexes. The analysis for the energy of the vesicle reveals that the change of elastic energy induced by various densities of amphiphilic molecules in the membrane plays an important role in this bulge-shape control. Because both charged dendrimers and vesicles are effective nanodevices for targeted drug delivery, our findings shed light on the effective means of developing multitasking nanocarriers as targeted drug delivery platforms.
Collapse
Affiliation(s)
- Li-Tang Yan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | | |
Collapse
|
24
|
D’Acunto M. Nanovectors for drug delivery: Long-lived pore dynamics for swelling liposomes. MECHANICS RESEARCH COMMUNICATIONS 2011; 38:34-37. [DOI: 10.1016/j.mechrescom.2010.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
Heuvingh J, Bonneau S. Asymmetric oxidation of giant vesicles triggers curvature-associated shape transition and permeabilization. Biophys J 2010; 97:2904-12. [PMID: 19948119 DOI: 10.1016/j.bpj.2009.08.056] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 08/03/2009] [Accepted: 08/17/2009] [Indexed: 01/05/2023] Open
Abstract
Oxidation of unsaturated lipids is a fundamental process involved in cell bioenergetics as well as in cell death. Using giant unilamellar vesicles and a chlorin photosensitizer, we asymmetrically oxidized the outer or inner monolayers of lipid membranes. We observed different shape transitions such as oblate to prolate and budding, which are typical of membrane curvature modifications. The asymmetry of the shape transitions is in accordance with a lowered effective spontaneous curvature of the leaflet being targeted. We interpret this effect as a decrease in the preferred area of the targeted leaflet compared to the other, due to the secondary products of oxidation (cleaved-lipids). Permeabilization of giant vesicles by light-induced oxidation is observed after a lag and is characterized in relation with the photosensitizer concentration. We interpret permeabilization as the opening of a pore above a critical membrane tension, resulting from the budding of vesicles. The evolution of photosensitized giant vesicle lysis tension was measured and yields an estimation of the effective spontaneous curvature at lysis. Additionally photo-oxidation was shown to be fusogenic.
Collapse
Affiliation(s)
- Julien Heuvingh
- Université Paris Diderot, Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR7636, Centre National de la Recherche Scientifique/Ecole Superieure Physique Chimie Industrielles Ville de Paris, Université Pierre et Marie Curie, Paris, France.
| | | |
Collapse
|
26
|
Yan LT, Yu X. Charged Dendrimers on Lipid Bilayer Membranes: Insight through Dissipative Particle Dynamics Simulations. Macromolecules 2009. [DOI: 10.1021/ma900895n] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Li-Tang Yan
- Physikalische Chemie II, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Xiaobo Yu
- Biochemistry Department, NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| |
Collapse
|
27
|
Mojzisova H, Bonneau S, Maillard P, Berg K, Brault D. Photosensitizing properties of chlorins in solution and in membrane-mimicking systems. Photochem Photobiol Sci 2009; 8:778-87. [PMID: 19492105 DOI: 10.1039/b822269j] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photosensitizing properties of three chlorins, meso-tetra(3-hydroxyphenyl)chlorin (m-THPC), chlorin e6 (Ce6) and meso-tetraphenylchlorin substituted by two adjacent sulfonated groups (TPCS(2a)) are compared in solution and when incorporated in dioleoyl-sn-phosphatidylcholine (DOPC) liposomes. In solution, the three chlorins possess a similar efficacy to generate singlet oxygen (quantum yield approximately 0.65). The formation of conjugated dienes was used to determine their ability to induce the peroxidation of methyl linoleate as a target of singlet oxygen. In ethanol solution, the apparent quantum yield for this process is the same for the three chlorins and its value agrees with that expected from the known rates for the decay of singlet oxygen and its reaction with methyl linoleate. When incorporated in liposomes, the order of efficacy is m-THPC > TPCS(2a) > Ce6. This order is tentatively assigned to the relative embedment of the photosensitizer within the lipidic bilayer, TPCS(2a) and Ce6 being anchored by their negative chains nearer to the water-lipid interface. The photoinduced permeation of the lipidic bilayer by these chlorins was investigated by measuring the release of carboxyfluorescein entrapped into DOPC liposomes. The charged chlorins, in particular TPCS(2a), are the most efficient, a result discussed in relation with the technology of photochemical internalization, PCI.
Collapse
Affiliation(s)
- Halina Mojzisova
- Laboratoire Acides Nucléiques et BioPhotonique (ANBioPhi), CNRS FRE 3207, 91030 Evry cedex, France
| | | | | | | | | |
Collapse
|
28
|
Elzainy AAW, Gu X, Simons FER, Simons KJ. Hydroxyzine- and Cetirizine-Loaded Liposomes: Effect of Duration of Thin Film Hydration, Freeze-Thawing, and Changing Buffer pH on Encapsulation and Stability. Drug Dev Ind Pharm 2008; 31:281-91. [PMID: 15830724 DOI: 10.1081/ddc-52070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To assess the effect of the duration of film hydration, freeze-thawing, and changing buffer pH on the extent of entrapment of hydroxyzine and cetirizine, H1-antihistamines with different polarity, into liposomes, and the stability of these liposomes. METHODS Multilamellar vesicles (MLV) were prepared by thin-lipid film hydration using L-alpha-phosphatidylcholine (PC) and buffer containing 80 mg hydroxyzine at pH 7. For MLV containing hydroxyzine, the liposomes were subjected to 1) hydration for 1 h, 24 h, or 48 h for the control batch, batch B, or batch D respectively; and 2) hydration for 1 h, 24 h, or 48 h with freeze-thawing for 5-cycles for batch A, batch C, or batch E, respectively. These formulations were stored at 10 +/- 2 degrees C and 37 +/- 0.1 degrees C. Small unilamellar vesicles (SUV) and MLV were prepared using L-alpha-phosphatidylcholine (PC), and buffer at pH 5.0, 5.5, 6.0, 6.5, and 7.0, containing 80 mg hydroxyzine or 82 mg cetirizine by the ethanol injection and thin-lipid film hydration methods, respectively. These formulations were stored at 10 +/- 2 degrees C. Liposomes were evaluated immediately after preparation and after storage by determining percent entrapment of hydroxyzine (PETH) or of cetirizine (PEC) and by observing changes in the physical appearance (PA). Particle size (PSA) of the liposomes freshly prepared at pH=6.5 was measured from transmission electron micrographs (TEM). RESULTS Increasing thin-film hydration time or repeated freeze-thawing did not affect the initial PETH or long-term stability of control, A, B, C, D, and E batches of MLV containing hydroxyzine stored at 10 +/- 2 degrees C. At 37 +/- 0.1 degrees C, PETH of all MLV batches decreased considerably after 1 month. This was more evident in batches B, C, and E exposed to freeze-thawing. The PETH of SUV increased markedly from 53.0% to 84.0% when the pH of the buffer was increased from 5.0 to 5.5. As pH increased from 6.0 to 7.0, PETH continued to increase from 84% to 94%. The initial PETH of MLV increased slightly from 82.0% to 94.0% as the buffer pH values increased from 5.0 to 7.0. There was no effect of pH on initial PEC, and stability of SUV or initial PEC of MLV, which ranged from 92% to 94%, as buffer pH values increased from 5.0 to 6.5. After storage at 10 +/- 2 degrees C PEC in MLV decreased from 94% to 74%. CONCLUSIONS The freeze-thawing processes had some effect on the stability of liposomes stored at temperatures higher than ambient temperature, 37 +/- 0.1 degrees C. The effect of changing the buffer pH from 5.5 to 7.0, and from 5.0 to 6.5 on initial PETH and PEC, respectively, was minimal. After 24 months at l0 +/- 2 degrees C, pH had no effects on PETH; however, PEC of MLV decreased.
Collapse
Affiliation(s)
- Abeer A W Elzainy
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
29
|
Alexeev A, Uspal WE, Balazs AC. Harnessing janus nanoparticles to create controllable pores in membranes. ACS NANO 2008; 2:1117-1122. [PMID: 19206328 DOI: 10.1021/nn8000998] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We use a coarse-grained numerical simulation to design a synthetic membrane with stable pores that can be controllably opened and closed. Specifically, we use dissipative particle dynamics to probe the interactions between lipid bilayer membranes and nanoparticles. The particles are nanoscopic Janus beads that comprise both hydrophobic and hydrophilic portions. We demonstrate that when the membrane rips and forms a hole due to an external stress, these nanoparticles diffuse to the edge of the hole and form a stable pore, which persists after the stress is released. Once the particle-lined pore is formed, a small increase in membrane tension readily reopens the pore, allowing transport through the membrane. Besides the application of an external force, the membrane tension can be altered by varying, for example, temperature or pH. Thus, the findings provide guidelines for designing nanoparticle-bilayer assemblies for targeted delivery, where the pores open and the cargo is released only when the local environmental conditions reach a critical value.
Collapse
Affiliation(s)
- Alexander Alexeev
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
30
|
Engelhardt H. Mechanism of osmoprotection by archaeal S-layers: a theoretical study. J Struct Biol 2007; 160:190-9. [PMID: 17888677 DOI: 10.1016/j.jsb.2007.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/29/2007] [Accepted: 08/02/2007] [Indexed: 11/19/2022]
Abstract
Many Archaea possess protein surface layers (S-layers) as the sole cell wall component. S-layers must therefore integrate the basic functions of mechanical and osmotic cell stabilisation. While the necessity is intuitively clear, the mechanism of structural osmoprotection by S-layers has not been elucidated yet. The theoretical analysis of a model S-layer-membrane assembly, derived from the typical cell envelope of Crenarchaeota, explains how S-layers impart lipid membranes with increased resistance to internal osmotic pressure and offers a quantitative assessment of S-layer stability. These considerations reveal the functional significance of S-layer symmetry and unit cell size and shed light on the rationale of S-layer architectures.
Collapse
Affiliation(s)
- Harald Engelhardt
- Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
31
|
Rodriguez N, Cribier S, Pincet F. Transition from long- to short-lived transient pores in giant vesicles in an aqueous medium. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:061902. [PMID: 17280091 DOI: 10.1103/physreve.74.061902] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/24/2006] [Indexed: 05/13/2023]
Abstract
We have observed large pores in the membrane of giant vesicles in an aqueous medium. The lifetime of the pores can reach 2 min and their size (a few micrometers) enables their visualization by fluorescence microscopy. These pores are obtained thanks to a destabilization of the membrane due to the synergistic action of a cone-shaped and nitrobenzodiazole (NBD) labeled phospholipid illuminated in the presence of dithionite. The opening of the pore occurs immediately after illumination starts so that it can be accurately triggered. A concomitant decrease of the vesicle radius is observed; we interpret it as a solubilization of the membrane. Depending on the rate of this solubilization, long- or short-lived pores were observed. At the transition between both regimes for a 30 microm vesicle, the solubilization rate was about 1/300 s{-1} . In order to interpret these observations, we have revisited the current model of pore opening to take into account this solubilization. This proposed model along with simulations enables us to prove that solubilization explains why the large long-lived pores are observed even in an aqueous medium. The model also predicts the solubilization rate at the transition between a single long-lived pore and a cascade of short-lived pores.
Collapse
|
32
|
Kaga M, Ohta T. Shrinkage dynamics of a vesicle in surfactant solutions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2006; 21:91-8. [PMID: 17089082 DOI: 10.1140/epje/i2006-10050-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 10/17/2006] [Indexed: 05/12/2023]
Abstract
We develop a theory for shrinkage dynamics of a vesicle interacting with surfactant molecules. A stepwise shrinkage is formulated in such a way that it consists of two processes. One is a nucleation process of a pore under increasing of the membrane tension. The other is a closure process of the pore due to the line tension of the pore edge after leakage of the inner fluid. We carry out numerical simulations and show that the results agree with experiments semi-quantitatively. An analytical study is also carried out to understand the periodic shrinkage.
Collapse
Affiliation(s)
- M Kaga
- Department of Physics, Graduate School of Science, Kyoto University, 606-8502, Kyoto, Japan.
| | | |
Collapse
|
33
|
Logisz CC, Hovis JS. Effect of salt concentration on membrane lysis pressure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1717:104-8. [PMID: 16288973 DOI: 10.1016/j.bbamem.2005.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 10/04/2005] [Accepted: 10/06/2005] [Indexed: 10/25/2022]
Abstract
Cell membranes are capable of withstanding significant osmotic stress, the exact amount of which varies with the lipid composition. In this paper, we examine the effect that salt concentration has on the lysis pressure of membranes containing anionic lipids. Vesicles containing varying amounts of phosphatidylcholine and phosphatidylglycerol were osmotically stressed using NaCl as the osmolyte. The lysis pressure was observed to vary linearly with the Debye screening length and the extent of the variation was linear with anionic lipid content. The implications these results have for cells that frequently encounter low solute environments are discussed.
Collapse
Affiliation(s)
- Catherine C Logisz
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|