Von Willebrand factor and the aortic valve: Concepts that are important in the transcatheter aortic valve replacement era.
Thromb Res 2018;
170:20-27. [PMID:
30092557 DOI:
10.1016/j.thromres.2018.07.028]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022]
Abstract
Since the approval of the first transcatheter aortic valve replacement (TAVR) device in 2011, this technology has undergone substantial enhancements and exponential growth. However, valve thrombosis and residual paravalvular leaks (PVL) are among the challenges that require further investigation. Recently, monitoring von Willebrand factor (vWF) multimers has emerged as a tool to help evaluate the severity of PVL after TAVR. Following TAVR, vWF large multimers recovery have been documented. The role of large vWF multimers recovery and their interactions with platelets, and the endothelium have not been entirely elucidated. In this review, we discuss vWF synthesis and its role in aortic stenosis. We further provide an overview of the studies that investigated changes affecting vWF multimers following TAVR and the role of HMW vWF multimers monitoring in the determination of PVL severity. We also offer potential future directions for what will be fertile ground for research in this field.
Collapse