• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643712)   Today's Articles (431)   Subscriber (50622)
For: Assis PC, de Souza RP, da Silva PC, da Silva LR, Lucena LS, Lenzi EK. Non-Markovian Fokker-Planck equation: solutions and first passage time distribution. Phys Rev E Stat Nonlin Soft Matter Phys 2006;73:032101. [PMID: 16605577 DOI: 10.1103/physreve.73.032101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Indexed: 05/08/2023]
Number Cited by Other Article(s)
1
Tateishi AA, Lenzi EK, da Silva LR, Ribeiro HV, Picoli S, Mendes RS. Different diffusive regimes, generalized Langevin and diffusion equations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012;85:011147. [PMID: 22400552 DOI: 10.1103/physreve.85.011147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/28/2011] [Indexed: 05/31/2023]
2
Lenzi EK, Yednak CAR, Evangelista LR. Non-Markovian diffusion and the adsorption-desorption process. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010;81:011116. [PMID: 20365332 DOI: 10.1103/physreve.81.011116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Indexed: 05/29/2023]
3
Lenzi EK, Evangelista LR, Lenzi MK, da Silva LR. Fokker-Planck equation in a wedge domain: anomalous diffusion and survival probability. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009;80:021131. [PMID: 19792101 DOI: 10.1103/physreve.80.021131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 06/27/2009] [Indexed: 05/28/2023]
4
Lucena L, da Silva L, Evangelista L, Lenzi M, Rossato R, Lenzi E. Solutions for a fractional diffusion equation with spherical symmetry using Green function approach. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2007.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
5
Rossato R, Lenzi MK, Evangelista LR, Lenzi EK. Fractional diffusion equation in a confined region: surface effects and exact solutions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007;76:032102. [PMID: 17930291 DOI: 10.1103/physreve.76.032102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Indexed: 05/25/2023]
6
Srokowski T. Non-Markovian Lévy diffusion in nonhomogeneous media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007;75:051105. [PMID: 17677020 DOI: 10.1103/physreve.75.051105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/02/2007] [Indexed: 05/16/2023]
7
Malacarne LC, Mendes RS, Lenzi EK, Lenzi MK. General solution of the diffusion equation with a nonlocal diffusive term and a linear force term. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006;74:042101. [PMID: 17155110 DOI: 10.1103/physreve.74.042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Indexed: 05/12/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA