1
|
Ramírez-Piscina L, Sancho JM. Subconductance states in a semimicroscopic model for a tetrameric pore. Phys Rev E 2024; 109:044402. [PMID: 38755917 DOI: 10.1103/physreve.109.044402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 05/18/2024]
Abstract
A physical model for a structured tetrameric pore is studied. The pore is modeled as a device composed of four subunits, each one exhibiting two possible states (open and closed). The pore is located within a membrane that separates two reservoirs with ionic solutions. All variables of the model follow physical dynamical equations accounting for the internal structure of the pore, derived from a single energy functional and supplemented with thermal noises. An extensive study of the resulting ionic intensity is performed for different values of the control parameters, mainly membrane potential and reservoir ion concentrations. Two possible physical devices are studied: voltage-gated (including a voltage sensor in each subunit) and non-voltage-gated pores. The ionic flux through the pore exhibits several distinct dynamical configurations, in particular subconductance states, which indicate very different dynamical internal states of the subunits. Such subconductance states become much easier to observe in sensorless pores. These results are compared with available experimental data on tetrameric K channels and analytical predictions.
Collapse
Affiliation(s)
- L Ramírez-Piscina
- Departament de Física Aplicada, EPSEB, Universitat Politécnica de Catalunya, Avinguda Doctor Marañón, 44, E-08028 Barcelona, Spain
| | - J M Sancho
- Universitat de Barcelona, Departament de Física de la Matèria Condensada, Martí i Franqués, 1, E-08028 Barcelona, Spain
| |
Collapse
|
2
|
Perez-Grau JJ, Ramirez P, Garcia-Morales V, Cervera J, Nasir S, Ali M, Ensinger W, Mafe S. Fluoride-Induced Negative Differential Resistance in Nanopores: Experimental and Theoretical Characterization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54447-54455. [PMID: 34735108 PMCID: PMC9131425 DOI: 10.1021/acsami.1c18672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
We describe experimentally and theoretically the fluoride-induced negative differential resistance (NDR) phenomena observed in conical nanopores operating in aqueous electrolyte solutions. The threshold voltage switching occurs around 1 V and leads to sharp current drops in the nA range with a peak-to-valley ratio close to 10. The experimental characterization of the NDR effect with single pore and multipore samples concern different pore radii, charge concentrations, scan rates, salt concentrations, solvents, and cations. The experimental fact that the effective radius of the pore tip zone is of the same order of magnitude as the Debye length for the low salt concentrations used here is suggestive of a mixed pore surface and bulk conduction regime. Thus, we propose a two-region conductance model where the mobile cations in the vicinity of the negative pore charges are responsible for the surface conductance, while the bulk solution conductance is assumed for the pore center region.
Collapse
Affiliation(s)
- Jose J. Perez-Grau
- Departament
de Física Aplicada, Universitat Politècnica
de València, E-46022 Valencia, Spain
| | - Patricio Ramirez
- Departament
de Física Aplicada, Universitat Politècnica
de València, E-46022 Valencia, Spain
| | - Vladimir Garcia-Morales
- Departament
de Física de la Terra i Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| | - Javier Cervera
- Departament
de Física de la Terra i Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| | - Saima Nasir
- Department
of Material- and Geo-Sciences, Materials Analysis, Technische Universität Darmstadt, Alarich-Weiss-Str. 02, D-64287 Darmstadt, Germany
- Materials
Research Department, GSI Helmholtzzentrum
für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany
| | - Mubarak Ali
- Department
of Material- and Geo-Sciences, Materials Analysis, Technische Universität Darmstadt, Alarich-Weiss-Str. 02, D-64287 Darmstadt, Germany
- Materials
Research Department, GSI Helmholtzzentrum
für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany
| | - Wolfgang Ensinger
- Department
of Material- and Geo-Sciences, Materials Analysis, Technische Universität Darmstadt, Alarich-Weiss-Str. 02, D-64287 Darmstadt, Germany
| | - Salvador Mafe
- Departament
de Física de la Terra i Termodinàmica, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
3
|
Ali M, Ramirez P, Nasir S, Nguyen QH, Ensinger W, Mafe S. Current rectification by nanoparticle blocking in single cylindrical nanopores. NANOSCALE 2014; 6:10740-10745. [PMID: 25100503 DOI: 10.1039/c4nr02968b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Blocking of a charged pore by an oppositely charged nanoparticle can support rectifying properties in a cylindrical nanopore, as opposed to the usual case of a fixed asymmetry in the pore geometry and charge distribution. We present here experimental data and model calculations to confirm this fundamental effect. The nanostructure imaging and the effects of nanoparticle concentration, pore radius, and salt concentration on the electrical conductance-voltage (G-V) curves are discussed. Logic responses based on chemical and electrical inputs/outputs could also be implemented with a single pore acting as an effective nanofluidic diode. To better show the generality of the results, different charge states and relative sizes of the nanopore and the nanoparticle are considered, emphasizing those physical concepts that are also found in the ionic drug blocking of protein ion channels.
Collapse
Affiliation(s)
- Mubarak Ali
- Materials Research Dept., GSI Helmholtzzentrum für Schwerionen-forschung, Planckstrasse 1, D-64291, Darmstadt, Germany.
| | | | | | | | | | | |
Collapse
|
4
|
Ramirez P, Cervera J, Ali M, Ensinger W, Mafe S. Logic Functions with Stimuli-Responsive Single Nanopores. ChemElectroChem 2014. [DOI: 10.1002/celc.201300255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Harsman A, Bartsch P, Hemmis B, Krüger V, Wagner R. Exploring protein import pores of cellular organelles at the single molecule level using the planar lipid bilayer technique. Eur J Cell Biol 2012; 90:721-30. [PMID: 21684628 DOI: 10.1016/j.ejcb.2011.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Proteins of living cells carry out their specialized functions within various subcellular membranes or aqueous spaces. Approximately half of all the proteins of a typical cell are transported into or across membranes. Targeting and transport to their correct subcellular destinations are essential steps in protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Virtually all proteins of the endosymbiotic organelles, chloroplasts and mitochondria, are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic and biochemical techniques led to rather detailed knowledge on the subunit composition of the various protein transport complexes which carry out the membrane transport of the preproteins. Conclusive concepts on targeting and cytosolic transport of polypeptides emerged, while still few details on the molecular nature and mechanisms of the channel moieties of protein translocation complexes have been achieved. In this paper we will describe the history of how the individual subunits forming the channel pores of the chloroplast, mitochondrial and endoplasmic reticulum protein import machineries were identified and characterized by single channel electrophysiological techniques in planar bilayers. We will also highlight recent developments in the exploration of the molecular properties of protein translocating channels and the regulation of the diverse protein translocation systems using the planar bilayer technique.
Collapse
Affiliation(s)
- Anke Harsman
- University of Osnabrück, Faculty of Biology and Chemistry, Department of Biophysics, Barbarastr. 13, 49076 Osnabrück, Germany
| | | | | | | | | |
Collapse
|
6
|
Blockage of anthrax PA63 pore by a multicharged high-affinity toxin inhibitor. Biophys J 2010; 99:134-43. [PMID: 20655841 DOI: 10.1016/j.bpj.2010.03.070] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/09/2010] [Accepted: 03/31/2010] [Indexed: 11/23/2022] Open
Abstract
Single channels of Bacillus anthracis protective antigen, PA(63), were reconstituted into planar lipid membranes and their inhibition by cationic aminopropylthio-beta-cyclodextrin, AmPrbetaCD, was studied. The design of the highly efficient inhibitor, the sevenfold symmetrical cyclodextrin molecule chemically modified to add seven positive charges, was guided by the symmetry and predominantly negative charge of the PA(63) pore. The protective action of this compound has been demonstrated earlier at both single-molecule and whole-organism levels. In this study, using noise analysis, statistics of time-resolved single-channel closure events, and multichannel measurements, we find that AmPrbetaCD action is bimodal. The inhibitor, when added to the cis side of the membrane, blocks the channel reversibly. At high salt concentrations, the AmPrbetaCD blockage of the channel is well described as a two-state Markov process, in which both the on- and off-rates are functions of the salt concentration, whereas the applied voltage affects only the off-rate. At salt concentrations smaller than 1.5 M, the second mode of AmPrbetaCD action on the channel is discovered: addition of the inhibitor enhances voltage gating, making the closed states of the channel more favorable. The effect depends on the lipid composition of the membrane.
Collapse
|
7
|
Interaction of heparins and dextran sulfates with a mesoscopic protein nanopore. Biophys J 2010; 97:2894-903. [PMID: 19948118 DOI: 10.1016/j.bpj.2009.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/20/2009] [Accepted: 09/04/2009] [Indexed: 11/21/2022] Open
Abstract
A mechanism of how polyanions influence the channel formed by Staphylococcus aureus alpha-hemolysin is described. We demonstrate that the probability of several types of polyanions to block the ion channel depends on the presence of divalent cations and the polyanion molecular weight and concentration. For heparins, a 10-fold increase in molecular weight decreases the half-maximal inhibitory concentration, IC(50), nearly 10(4)-fold. Dextran sulfates were less effective at blocking the channel. The polyanions are significantly more effective at reducing the conductance when added to the trans side of this channel. Lastly, the effectiveness of heparins on the channel conductance correlated with their influence on the zeta-potential of liposomes. A model that includes the binding of polyanions to the channel-membrane complex via Ca(2+)-bridges and the asymmetry of the channel structure describes the data adequately. Analysis of the single channel current noise of wild-type and site-directed mutant versions of alpha-hemolysin channels suggests that a single polyanion enters the pore due to electrostatic forces and physically blocks the ion conduction path. The results might be of interest for pharmacology, biomedicine, and research aiming to design mesoscopic pore blockers.
Collapse
|
8
|
Ramírez P, Apel PY, Cervera J, Mafé S. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. NANOTECHNOLOGY 2008; 19:315707. [PMID: 21828799 DOI: 10.1088/0957-4484/19/31/315707] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.
Collapse
Affiliation(s)
- Patricio Ramírez
- Departament de Física Aplicada, Universitat Politècnica de València, E-46022 València, Spain
| | | | | | | |
Collapse
|
9
|
Ramírez P, Gómez V, Cervera J, Schiedt B, Mafé S. Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. J Chem Phys 2007; 126:194703. [PMID: 17523824 DOI: 10.1063/1.2735608] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polymeric nanopores with fixed charges show ionic selectivity when immersed in aqueous electrolyte solutions. The understanding of the electrical interaction between these charges and the mobile ions confined in the inside nanopore solution is the key issue in the design of potential applications. The authors have theoretically described the effects that spatially inhomogeneous fixed charge distributions exert on the ionic transport and selectivity properties of the nanopore. A comprehensive set of one-dimensional distributions including the skin, core, cluster, and asymmetric cases are analyzed on the basis of the Nernst-Planck equations. Current-voltage curves, nanopore potentials, and transport numbers are calculated for the above distributions and compared with those obtained for a homogeneously charged nanopore with the same average fixed charge concentration. The authors have discussed if an appropriate design of the spatial fixed charge inhomogeneity can lead to an enhancement of the transport and selectivity with respect to the homogeneous nanopore case. Finally, they have compared the theoretical predictions with relevant experimental data.
Collapse
Affiliation(s)
- Patricio Ramírez
- Departament de Física Aplicada, Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain.
| | | | | | | | | |
Collapse
|