Das A, Kundu A, Pradhan P. Einstein relation and hydrodynamics of nonequilibrium mass transport processes.
Phys Rev E 2017;
95:062128. [PMID:
28709216 DOI:
10.1103/physreve.95.062128]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Indexed: 06/07/2023]
Abstract
We derive hydrodynamics of paradigmatic conserved-mass transport processes on a ring. The systems, governed by chipping, diffusion, and coalescence of masses, eventually reach a nonequilibrium steady state, having nontrivial correlations, with steady-state measures in most cases not known. In these processes, we analytically calculate two transport coefficients, bulk-diffusion coefficient and conductivity. Remarkably, the two transport coefficients obey an equilibrium-like Einstein relation even when the microscopic dynamics violates detailed balance and systems are far from equilibrium. Moreover, we show, using a macroscopic fluctuation theory, that the probability of large deviation in density, obtained from the above hydrodynamics, is in complete agreement with the same derived earlier by Das et al. [Phys. Rev. E 93, 062135 (2016)2470-004510.1103/PhysRevE.93.062135] using an additivity property.
Collapse