1
|
Negro G, Head LC, Carenza LN, Shendruk TN, Marenduzzo D, Gonnella G, Tiribocchi A. Topology controls flow patterns in active double emulsions. Nat Commun 2025; 16:1412. [PMID: 39915471 PMCID: PMC11802772 DOI: 10.1038/s41467-025-56236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Active emulsions and liquid crystalline shells are intriguing and experimentally realisable types of topological matter. Here we numerically study the morphology and spatiotemporal dynamics of a double emulsion, where one or two passive small droplets are embedded in a larger active droplet. We find activity introduces a variety of rich and nontrivial nonequilibrium states in the system. First, a double emulsion with a single active droplet becomes self-motile, and there is a transition between translational and rotational motion: both of these regimes remain defect-free, hence topologically trivial. Second, a pair of particles nucleate one or more disclination loops, with conformational dynamics resembling a rotor or chaotic oscillator, accessed by tuning activity. In the first state a single, topologically charged, disclination loop powers the rotation. In the latter state, this disclination stretches and writhes in 3D, continuously undergoing recombination to yield an example of an active living polymer. These emulsions can be self-assembled in the lab, and provide a pathway to form flow and topological patterns in active matter in a controlled way, as opposed to bulk systems that typically yield active turbulence.
Collapse
Affiliation(s)
- Giuseppe Negro
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK.
| | - Louise C Head
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK.
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA.
| | - Livio N Carenza
- Physics Department, College of Sciences, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Türkiye
| | - Tyler N Shendruk
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, Italy
| | - Adriano Tiribocchi
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, via dei Taurini 19, Roma, Italy
- INFN "Tor Vergata", Via della Ricerca Scientifica 1, Roma, Italy
| |
Collapse
|
2
|
Li CY, Tang XZ, Yu X, Atzin N, Song ZP, Chen CQ, Abbott NL, Li BX, de Pablo JJ, Lu YQ. Command of three-dimensional solitary waves via photopatterning. Proc Natl Acad Sci U S A 2024; 121:e2405168121. [PMID: 39196620 PMCID: PMC11388288 DOI: 10.1073/pnas.2405168121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Multidimensional solitons are prevalent in numerous research fields. In orientationally ordered soft matter system, three-dimensional director solitons exemplify the localized distortion of molecular orientation. However, their precise manipulation remains challenging due to unpredictable and uncontrolled generation. Here, we utilize preimposed programmable photopatterning in nematics to control the kinetics of director solitons. This enables both unidirectional and bidirectional generation at specific locations and times, confinement within micron-scaled patterns of diverse shapes, and directed propagation along predefined trajectories. A focused dynamical model provides insight into the origins of these solitons and aligns closely with experimental observations, underscoring the pivotal role of anchoring conditions in soliton manipulation. Our findings pave the way for diverse fundamental research avenues and promising applications, including microcargo transportation and optical information processing.
Collapse
Affiliation(s)
- Chao-Yi Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xing-Zhou Tang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637
| | - Xiao Yu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Noe Atzin
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637
| | - Zhen-Peng Song
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chu-Qiao Chen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
| | - Bing-Xiang Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Tang X, Atzin N, Mozaffari A, Das S, Abbott NL, de Pablo JJ. Generation and Propagation of Flexoelectricity-Induced Solitons in Nematic Liquid Crystals. ACS NANO 2024; 18:10768-10775. [PMID: 38597971 PMCID: PMC11044575 DOI: 10.1021/acsnano.3c10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
Solitons in nematic liquid crystals facilitate the rapid transport and sensing in microfluidic systems. Little is known about the elementary conditions needed to create solitons in nematic materials. In this study, we apply a combination of theory, computational simulations, and experiments to examine the formation and propagation of solitary waves, or "solitons", in nematic liquid crystals under the influence of an alternating current (AC) electric field. We find that these solitary waves exhibit "butterfly"-like or "bullet"-like structures that travel in the direction perpendicular to the applied electric field. Such structures propagate over long distances without losing their initial shape. The theoretical framework adopted here helps identify several key factors leading to the formation of solitons in the absence of electrostatic interactions. These factors include surface irregularities, flexoelectric polarization, unequal elastic constants, and negative anisotropic dielectric permittivity. The results of simulations are shown to be in good agreement with our own experimental observations, serving to establish the validity of the theoretical concepts and ideas advanced in this work.
Collapse
Affiliation(s)
- Xingzhou Tang
- Pritzker
School of Molecular Engineering, The University
of Chicago, Chicago, Illinois 60637, United States
- College
of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Noe Atzin
- Pritzker
School of Molecular Engineering, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Ali Mozaffari
- Pritzker
School of Molecular Engineering, The University
of Chicago, Chicago, Illinois 60637, United States
- OpenEye
Scientific, Cadence Molecular Sciences, Boston, Massachusetts 02114, United States
| | - Soumik Das
- Smith
School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, 208016, India
| | - Nicholas L. Abbott
- Smith
School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, The University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Lesniewska M, Mottram N, Henrich O. Defect-influenced particle advection in highly confined liquid crystal flows. SOFT MATTER 2024; 20:2218-2231. [PMID: 38227288 DOI: 10.1039/d3sm01297b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
We study the morphology of the Saturn ring defect and director structure around a colloidal particle with normal anchoring conditions and within the flow of the nematic host phase through a rectangular duct of comparable size to the particle. The changes in the defect structures and director profile influence the advection behaviour of the particle, which we compare to that in a simple Newtonian host phase. These effects lead to a non-monotonous dependence of the differential velocity of particle and fluid, also known as retardation ratio, on the Ericksen number.
Collapse
Affiliation(s)
| | - Nigel Mottram
- School of Mathematics & Statistics, University of Glasgow, Glasgow G12 8QQ, UK
| | - Oliver Henrich
- Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK.
| |
Collapse
|
5
|
Krüger T, Maryshev I, Frey E. Hierarchical defect-induced condensation in active nematics. SOFT MATTER 2023; 19:8954-8964. [PMID: 37971530 DOI: 10.1039/d3sm00895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Topological defects play a central role in the formation and organization of various biological systems. Historically, such nonequilibrium defects have been mainly studied in the context of homogeneous active nematics. Phase-separated systems, in turn, are known to form dense and dynamic nematic bands, but typically lack topological defects. In this paper, we use agent-based simulations of weakly aligning, self-propelled polymers and demonstrate that contrary to the existing paradigm phase-separated active nematics form -1/2 defects. Moreover, these defects, emerging due to interactions among dense nematic bands, constitute a novel second-order collective state. We investigate the morphology of defects in detail and find that their cores correspond to a strong increase in density, associated with a condensation of nematic fluxes. Unlike their analogs in homogeneous systems, such condensed defects form and decay in a different way and do not involve positively charged partners. We additionally observe and characterize lateral arc-like structures that separate from a band's bulk and move in transverse direction. We show that the key control parameters defining the route from stable bands to the coexistence of dynamic lanes and defects are the total density of particles and their path persistence length. We introduce a hydrodynamic theory that qualitatively recapitulates all the main features of the agent-based model, and use it to show that the emergence of both defects and arcs can be attributed to the same anisotropic active fluxes. Finally, we present a way to artificially engineer and position defects, and speculate about experimental verification of the provided model.
Collapse
Affiliation(s)
- Timo Krüger
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany.
| | - Ivan Maryshev
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany.
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany.
- Max Planck School Matter to Life, Hofgartenstraße 8, 80539 Munich, Germany
| |
Collapse
|
6
|
Coelho RCV, Araújo NAM, Telo da Gama MM. Director alignment at the nematic-isotropic interface: elastic anisotropy and active anchoring. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200394. [PMID: 34455836 DOI: 10.1098/rsta.2020.0394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 06/13/2023]
Abstract
Activity in nematics drives interfacial flows that lead to preferential alignment that is tangential or planar for extensile systems (pushers) and perpendicular or homeotropic for contractile ones (pullers). This alignment is known as active anchoring and has been reported for a number of systems and described using active nematic hydrodynamic theories. The latter are based on the one-elastic constant approximation, i.e. they assume elastic isotropy of the underlying passive nematic. Real nematics, however, have different elastic constants, which lead to interfacial anchoring. In this paper, we consider elastic anisotropy in multiphase and multicomponent hydrodynamic models of active nematics and investigate the competition between the interfacial alignment driven by the elastic anisotropy of the passive nematic and the active anchoring. We start by considering systems with translational invariance to analyse the alignment at flat interfaces and, then, consider two-dimensional systems and active nematic droplets. We investigate the competition of the two types of anchoring over a wide range of the other parameters that characterize the system. The results of the simulations reveal that the active anchoring dominates except at very low activities, when the interfaces are static. In addition, we found that the elastic anisotropy does not affect the dynamics but changes the active length that becomes anisotropic. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.
Collapse
Affiliation(s)
- Rodrigo C V Coelho
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Margarida M Telo da Gama
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
7
|
Blow ML, Aqil M, Liebchen B, Marenduzzo D. Motility of active nematic films driven by "active anchoring". SOFT MATTER 2017; 13:6137-6144. [PMID: 28791336 DOI: 10.1039/c7sm00325k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We provide a minimal model for an active nematic film in contact with both a solid substrate and a passive isotropic fluid, and explore its dynamics in one and two dimensions using a combination of hybrid Lattice Boltzmann simulations and analytical calculations. By imposing nematic anchoring at the substrate while active flows induce a preferred alignment at the interface ("active anchoring"), we demonstrate that directed fluid flow spontaneously emerges in cases where the two anchoring types are opposing. In one dimension, our model reduces to an analogue of a loaded elastic column. Here, the transition from a stationary to a motile state is akin to the buckling bifurcation, but offers the possibility to reverse the flow direction for a given set of parameters and boundary conditions solely by changing initial conditions. The two-dimensional variant of our model allows for additional tangential instabilities, and it is found that undulations form in the interface above a threshold activity. Our results might be relevant for the design of active microfluidic geometries or curvature-guided self-assembly.
Collapse
Affiliation(s)
- Matthew L Blow
- SUPA, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Gutherie Tait Road, Edinburgh, EH9 3FD, UK.
| | | | | | | |
Collapse
|
8
|
Fadda F, Gonnella G, Marenduzzo D, Orlandini E, Tiribocchi A. Switching dynamics in cholesteric liquid crystal emulsions. J Chem Phys 2017; 147:064903. [DOI: 10.1063/1.4997637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- F. Fadda
- Dipartimento di Fisica and Sezione INFN, Università di Bari, Via Amendola 173, 70126 Bari, Italy
| | - G. Gonnella
- Dipartimento di Fisica and Sezione INFN, Università di Bari, Via Amendola 173, 70126 Bari, Italy
| | - D. Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| | - E. Orlandini
- Dipartimento di Fisica e Astronomia and Sezione INFN, Università di Padova, 35131 Padova, Italy
| | - A. Tiribocchi
- Dipartimento di Fisica e Astronomia and Sezione INFN, Università di Padova, 35131 Padova, Italy
| |
Collapse
|
9
|
Metselaar L, Dozov I, Antonova K, Belamie E, Davidson P, Yeomans JM, Doostmohammadi A. Electric-field-induced shape transition of nematic tactoids. Phys Rev E 2017; 96:022706. [PMID: 28950460 DOI: 10.1103/physreve.96.022706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 06/07/2023]
Abstract
The occurrence of new textures of liquid crystals is an important factor in tuning their optical and photonics properties. Here, we show, both experimentally and by numerical computation, that under an electric field chitin tactoids (i.e., nematic droplets) can stretch to aspect ratios of more than 15, leading to a transition from a spindlelike to a cigarlike shape. We argue that the large extensions occur because the elastic contribution to the free energy is dominated by the anchoring. We demonstrate that the elongation involves hydrodynamic flow and is reversible: the tactoids return to their original shapes upon removing the field.
Collapse
Affiliation(s)
- Luuk Metselaar
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Ivan Dozov
- Laboratoire de Physique des Solides, Université Paris-Sud, Université Paris-Saclay, CNRS, UMR 8502, Orsay, France
| | - Krassimira Antonova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Emmanuel Belamie
- Institut Charles Gerhardt Montpellier, ENSCM, Montpellier, France
| | - Patrick Davidson
- Laboratoire de Physique des Solides, Université Paris-Sud, Université Paris-Saclay, CNRS, UMR 8502, Orsay, France
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
10
|
Tiribocchi A, Da Re M, Marenduzzo D, Orlandini E. Shear dynamics of an inverted nematic emulsion. SOFT MATTER 2016; 12:8195-8213. [PMID: 27714315 DOI: 10.1039/c6sm01275b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we study theoretically the dynamics of a 2D and a 3D isotropic droplet in a nematic liquid crystal under a shear flow. We find a large repertoire of possible nonequilibrium steady states as a function of the shear rate and of the anchoring of the nematic director field at the droplet surface. We first discuss homeotropic anchoring. For weak anchoring, we recover the typical behaviour of a sheared isotropic droplet in a binary fluid, which rotates, stretches and can be broken by the applied flow. For intermediate anchoring, new possibilities arise due to elastic effects in the nematic fluid. We find that in this regime the 2D droplet can tilt and move in the flow, or tumble incessantly at the centre of the channel. For sufficiently strong anchoring, finally, one or both of the topological defects which form close to the surface of the isotropic droplet in equilibrium detach from it and get dragged deep into the nematic state by the flow. In 3D, instead, the Saturn ring associated with the normal anchoring disclination line can be deformed and shifted downstream by the flow, but remains always localized in the proximity of the droplet, at least for the parameter range we explored. Tangential anchoring in 2D leads to a different dynamic response, as the boojum defects characteristic of this situation can unbind from the droplet under a weaker shear with respect to the normal anchoring case. Our results should stimulate further experiments with inverted liquid crystal emulsions under shear, as most of the predictions can be testable in principle by monitoring the evolution of liquid crystalline orientation patterns or by tracking the position and shape of the droplet over time.
Collapse
Affiliation(s)
- A Tiribocchi
- Dipartimento di Fisica e Astronomia and Sezione INFN di Padova, Universitá di Padova, Via Marzolo 8, 35131 Padova, Italy.
| | - M Da Re
- Dipartimento di Fisica e Astronomia and Sezione INFN di Padova, Universitá di Padova, Via Marzolo 8, 35131 Padova, Italy.
| | - D Marenduzzo
- SUPA and The School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
| | - E Orlandini
- Dipartimento di Fisica e Astronomia and Sezione INFN di Padova, Universitá di Padova, Via Marzolo 8, 35131 Padova, Italy.
| |
Collapse
|
11
|
Zhang R, Roberts T, Aranson IS, de Pablo JJ. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring. J Chem Phys 2016; 144:084905. [PMID: 26931724 DOI: 10.1063/1.4940342] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.
Collapse
Affiliation(s)
- Rui Zhang
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Tyler Roberts
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Igor S Aranson
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
12
|
Zhang R, Zhou Y, Martínez-González JA, Hernández-Ortiz JP, Abbott NL, de Pablo JJ. Controlled deformation of vesicles by flexible structured media. SCIENCE ADVANCES 2016; 2:e1600978. [PMID: 27532056 PMCID: PMC4980106 DOI: 10.1126/sciadv.1600978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/14/2016] [Indexed: 05/29/2023]
Abstract
Liquid crystalline (LC) materials, such as actin or tubulin networks, are known to be capable of deforming the shape of cells. Here, elements of that behavior are reproduced in a synthetic system, namely, a giant vesicle suspended in a LC, which we view as a first step toward the preparation of active, anisotropic hybrid systems that mimic some of the functionality encountered in biological systems. To that end, we rely on a coupled particle-continuum representation of deformable networks in a nematic LC represented at the level of a Landau-de Gennes free energy functional. Our results indicate that, depending on its elastic properties, the LC is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude of the deformation is determined by a balance of elastic and surface forces. For perpendicular anchoring at the vesicle, a Saturn ring defect forms along the equatorial plane, and the vesicle adopts a pancake-like, oblate shape. For degenerate planar anchoring at the vesicle, two boojum defects are formed at the poles of the vesicle, which adopts an elongated, spheroidal shape. During the deformation, the volume of the topological defects in the LC shrinks considerably as the curvature of the vesicle increases. These predictions are confirmed by our experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring. We find that the tension of the vesicle suppresses vesicle deformation, whereas anchoring strength and large elastic constants promote shape anisotropy.
Collapse
Affiliation(s)
- Rui Zhang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ye Zhou
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Juan J. de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Doostmohammadi A, Adamer MF, Thampi SP, Yeomans JM. Stabilization of active matter by flow-vortex lattices and defect ordering. Nat Commun 2016; 7:10557. [PMID: 26837846 PMCID: PMC4742889 DOI: 10.1038/ncomms10557] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/28/2015] [Indexed: 01/30/2023] Open
Abstract
Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet-dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials.
Collapse
Affiliation(s)
- Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| | - Michael F. Adamer
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| | - Sumesh P. Thampi
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| | - Julia M. Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| |
Collapse
|
14
|
Papenkort S, Voigtmann T. Lattice Boltzmann simulations of a viscoelastic shear-thinning fluid. J Chem Phys 2015; 143:044512. [PMID: 26233150 DOI: 10.1063/1.4927576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a hybrid lattice Boltzmann algorithm for the simulation of flow glass-forming fluids, characterized by slow structural relaxation, at the level of the Navier-Stokes equation. The fluid is described in terms of a nonlinear integral constitutive equation, relating the stress tensor locally to the history of flow. As an application, we present results for an integral nonlinear Maxwell model that combines the effects of (linear) viscoelasticity and (nonlinear) shear thinning. We discuss the transient dynamics of velocities, shear stresses, and normal stress differences in planar pressure-driven channel flow, after switching on (startup) and off (cessation) of the driving pressure. This transient dynamics depends nontrivially on the channel width due to an interplay between hydrodynamic momentum diffusion and slow structural relaxation.
Collapse
Affiliation(s)
- S Papenkort
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Th Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| |
Collapse
|
15
|
Blow ML, Thampi SP, Yeomans JM. Biphasic, lyotropic, active nematics. PHYSICAL REVIEW LETTERS 2014; 113:248303. [PMID: 25541809 DOI: 10.1103/physrevlett.113.248303] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Indexed: 05/23/2023]
Abstract
We perform dynamical simulations of a two-dimensional active nematic fluid in coexistence with an isotropic fluid. Drops of active nematic become elongated, and an effective anchoring develops at the nematic-isotropic interface. The activity also causes an undulatory instability of the interface. This results in defects of positive topological charge being ejected into the nematic, leaving the interface with a diffuse negative charge. Quenching the active lyotropic fluid results in a steady state in which phase-separating domains are elongated and then torn apart by active stirring.
Collapse
Affiliation(s)
- Matthew L Blow
- Centro de Física Teórica e Computacional, Avenida Professor Gama Pinto 2, P-1649-003 Lisboa, Portugal and Departamento de Física da Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| | - Sumesh P Thampi
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
16
|
Papenkort S, Voigtmann T. Channel flow of a tensorial shear-thinning Maxwell model: Lattice Boltzmann simulations. J Chem Phys 2014; 140:164507. [DOI: 10.1063/1.4872219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Blow ML, Telo da Gama MM. Interfacial motion in flexo- and order-electric switching between nematic filled states. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:245103. [PMID: 23709473 DOI: 10.1088/0953-8984/25/24/245103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We consider a nematic liquid crystal, in coexistence with its isotropic phase, in contact with a substrate patterned with rectangular grooves. In such a system the nematic phase may fill the grooves without the occurrence of complete wetting. There may exist multiple (meta)stable filled states, each characterized by the type of distortion (bend or splay) in each corner of the groove and by the shape of the nematic-isotropic interface, and additionally the plateaux that separate the grooves may be either dry or wet with a thin layer of nematic. Using numerical simulations, we analyse the dynamical response of the system to an externally-applied electric field, with the aim of identifying switching transitions between these filled states. We find that order-electric coupling between the fluid and the field provides a means of switching between states where the plateaux between grooves are dry and states where they are wetted by a nematic layer, without affecting the configuration of the nematic within the groove. We find that flexoelectric coupling may change the nematic texture in the groove, provided that the flexoelectric coupling differentiates between the types of distortion at the corners of the substrate. We identify intermediate stages of the transitions, and the role played by the motion of the nematic-isotropic interface. We determine quantitatively the field magnitudes and orientations required to effect each type of transition.
Collapse
Affiliation(s)
- M L Blow
- Centro de Física Teórica e Computacional, Lisboa, Portugal.
| | | |
Collapse
|
18
|
Hung FR, Bale S. Faceted nanoparticles in a nematic liquid crystal: defect structures and potentials of mean force. MOLECULAR SIMULATION 2009. [DOI: 10.1080/08927020902801563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Hung FR. Quadrupolar particles in a nematic liquid crystal: effects of particle size and shape. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:021705. [PMID: 19391763 DOI: 10.1103/physreve.79.021705] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 12/16/2008] [Indexed: 05/27/2023]
Abstract
We investigate the effects of particle size and shape on the quadrupolar (Saturn-ring-like) defect structures formed by a nematic liquid crystal around nm-sized and mum -sized particles with spherical and spherocylindrical shapes. We also report results for the potentials of mean force in our systems, calculated using a mesoscale theory for the tensor order parameter Q of the nematic. Our results indicate that for pairs of nm-sized particles in close proximity, the nematic forms "entangled hyperbolic" defect structures regardless of the shape of the nanoparticles. In our calculations with nanoparticles we did not observe any other entangled or unentangled defect structures, in contrast to what was reported for pairs of mum -sized spherical particles. Such a finding suggests that the "entangled hyperbolic" defect structures are the most stable for pairs of nanoparticles in close proximity. For pairs of mum -sized particles, our results indicate that the nematic forms entangled "figure-of-eight" defect structures around pairs of spheres and spherocylinders. Our results suggest that the transition between "entangled hyperbolic" and figure-of-eight defect structures takes place when the diameter of the particle is between D=100 nm and 1 microm . We have also calculated the torques that develop when pairs of spherocylindrical nanoparticles in a nematic approach each other. Our calculations suggest that the nematic-mediated interactions between the nm-sized particles are fairly strong, up to 5700 k{B}T for the case of pairs of spherocylindrical nanoparticles arranged with their long axis parallel to each other. Furthermore, these interactions can make the particles to bind together at specific locations, and thus could be used to assemble the particles into ordered structures with different morphologies.
Collapse
Affiliation(s)
- Francisco R Hung
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| |
Collapse
|
20
|
Abukhdeir NM, Soulé ER, Rey AD. Non-isothermal model for nematic spherulite growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:13605-13613. [PMID: 18956848 DOI: 10.1021/la8022216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A computational study of the growth of two-dimensional nematic spherulites in an isotropic phase was performed using a Landau-de Gennes-type quadrupolar tensor order parameter model for the first-order isotropic/nematic transition of 5CB (pentylcyanobiphenyl). An energy balance, taking anisotropy into account, was derived and incorporated into the time-dependent model. Growth laws were determined for two different spherulite morphologies of the form t(n), with and without the inclusion of thermal effects. Results show that incorporation of the thermal energy balance correctly predicts the transition of the growth law exponent from the volume driven regime (n=1) to the thermally limited regime (approaching n = 1/2), agreeing well with experimental observations. An interfacial nematodynamic model is used to gain insight into the interactions that result in the progression of different spherulite growth regimes.
Collapse
|
21
|
Hung FR, Gettelfinger BT, Koenig GM, Abbott NL, de Pablo JJ. Nanoparticles in nematic liquid crystals: Interactions with nanochannels. J Chem Phys 2007; 127:124702. [PMID: 17902926 DOI: 10.1063/1.2770724] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A mesoscale theory for the tensor order parameter Q is used to investigate the structures that arise when spherical nanoparticles are suspended in confined nematic liquid crystals (NLCs). The NLC is "sandwiched" between a wall and a small channel. The potential of mean force is determined between particles and the bottom of the channels or between several particles. Our results suggest that strong NLC-mediated interactions between the particles and the sidewalls of the channels, on the order of hundreds of k(B)T, arise when the colloids are inside the channels. The magnitude of the channel-particle interactions is dictated by a combination of two factors, namely, the type of defect structures that develop when a nanoparticle is inside a channel, and the degree of ordering of the nematic in the region between the colloid and the nanochannel. The channel-particle interactions become stronger as the nanoparticle diameter becomes commensurate with the nanochannel width. Nanochannel geometry also affects the channel-particle interactions. Among the different geometries considered, a cylindrical channel seems to provide the strongest interactions. Our calculations suggest that small variations in geometry, such as removing the sharp edges of the channels, can lead to important reductions in channel-particle interactions. Our calculations for systems of several nanoparticles indicate that linear arrays of colloids with Saturn ring defects, which for some physical conditions are not stable in a bulk system, can be stabilized inside the nanochannels. These results suggest that nanochannels and NLCs could be used to direct the assembly of nanoparticles into ordered arrays with unusual morphologies.
Collapse
Affiliation(s)
- Francisco R Hung
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691, USA
| | | | | | | | | |
Collapse
|
22
|
Marenduzzo D, Orlandini E, Cates ME, Yeomans JM. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:031921. [PMID: 17930285 DOI: 10.1103/physreve.76.031921] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Indexed: 05/25/2023]
Abstract
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.
Collapse
Affiliation(s)
- D Marenduzzo
- SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, Scotland
| | | | | | | |
Collapse
|