1
|
Valizadeh N, Hamzehpour H, Samadpour M, Najafi MN. Edwards-Wilkinson depinning transition in fractional Brownian motion background. Sci Rep 2023; 13:12300. [PMID: 37516759 PMCID: PMC10387108 DOI: 10.1038/s41598-023-39191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023] Open
Abstract
There are various reports about the critical exponents associated with the depinning transition. In this study, we investigate how the disorder strength present in the support can account for this diversity. Specifically, we examine the depinning transition in the quenched Edwards-Wilkinson (QEW) model on a correlated square lattice, where the correlations are modeled using fractional Brownian motion (FBM) with a Hurst exponent of H.We identify a crossover time [Formula: see text] that separates the dynamics into two distinct regimes: for [Formula: see text], we observe the typical behavior of pinned surfaces, while for [Formula: see text], the behavior differs. We introduce a novel three-variable scaling function that governs the depinning transition for all considered H values. The associated critical exponents exhibit a continuous variation with H, displaying distinct behaviors for anti-correlated ([Formula: see text]) and correlated ([Formula: see text]) cases. The critical driving force decreases with increasing H, as the host medium becomes smoother for higher H values, facilitating fluid mobility. This fact causes the asymptotic velocity exponent [Formula: see text] to increase monotonically with H.
Collapse
Affiliation(s)
- N Valizadeh
- Department of Physics, K.N. Toosi University of Technology, Tehran, 15875-4416, Iran
| | - H Hamzehpour
- Department of Physics, K.N. Toosi University of Technology, Tehran, 15875-4416, Iran.
| | - M Samadpour
- Department of Physics, K.N. Toosi University of Technology, Tehran, 15875-4416, Iran
| | - M N Najafi
- Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| |
Collapse
|
2
|
Wiese KJ. Theory and experiments for disordered elastic manifolds, depinning, avalanches, and sandpiles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086502. [PMID: 35943081 DOI: 10.1088/1361-6633/ac4648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/23/2021] [Indexed: 06/15/2023]
Abstract
Domain walls in magnets, vortex lattices in superconductors, contact lines at depinning, and many other systems can be modeled as an elastic system subject to quenched disorder. The ensuing field theory possesses a well-controlled perturbative expansion around its upper critical dimension. Contrary to standard field theory, the renormalization group (RG) flow involves a function, the disorder correlator Δ(w), and is therefore termed the functional RG. Δ(w) is a physical observable, the auto-correlation function of the center of mass of the elastic manifold. In this review, we give a pedagogical introduction into its phenomenology and techniques. This allows us to treat both equilibrium (statics), and depinning (dynamics). Building on these techniques, avalanche observables are accessible: distributions of size, duration, and velocity, as well as the spatial and temporal shape. Various equivalences between disordered elastic manifolds, and sandpile models exist: an elastic string driven at a point and the Oslo model; disordered elastic manifolds and Manna sandpiles; charge density waves and Abelian sandpiles or loop-erased random walks. Each of the mappings between these systems requires specific techniques, which we develop, including modeling of discrete stochastic systems via coarse-grained stochastic equations of motion, super-symmetry techniques, and cellular automata. Stronger than quadratic nearest-neighbor interactions lead to directed percolation, and non-linear surface growth with additional Kardar-Parisi-Zhang (KPZ) terms. On the other hand, KPZ without disorder can be mapped back to disordered elastic manifolds, either on the directed polymer for its steady state, or a single particle for its decay. Other topics covered are the relation between functional RG and replica symmetry breaking, and random-field magnets. Emphasis is given to numerical and experimental tests of the theory.
Collapse
Affiliation(s)
- Kay Jörg Wiese
- Laboratoire de physique, Département de physique de l'ENS, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France
| |
Collapse
|
3
|
Balog I, Carpentier D, Fedorenko AA. Disorder-Driven Quantum Transition in Relativistic Semimetals: Functional Renormalization via the Porous Medium Equation. PHYSICAL REVIEW LETTERS 2018; 121:166402. [PMID: 30387655 DOI: 10.1103/physrevlett.121.166402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/20/2018] [Indexed: 06/08/2023]
Abstract
In the presence of randomness, a relativistic semimetal undergoes a quantum transition towards a diffusive phase. A standard approach relates this transition to the U(N) Gross-Neveu model in the limit of N→0. We show that the corresponding fixed point is infinitely unstable, demonstrating the necessity to include fluctuations beyond the usual Gaussian approximation. We develop a functional renormalization group method amenable to include these effects and show that the disorder distribution renormalizes following the so-called porous medium equation. We find that the transition is controlled by a nonanalytic fixed point drastically different from that of the U(N) Gross-Neveu model. Our approach provides a unique mechanism of spontaneous generation of a finite density of states and also characterizes the scaling behavior of the broad distribution of fluctuations close to the transition. It can be applied to other problems where nonanalytic effects may play a role, such as the Anderson localization transition.
Collapse
Affiliation(s)
- Ivan Balog
- Institute of Physics, P.O. Box 304, Bijenička cesta 46, HR-10001 Zagreb, Croatia
| | - David Carpentier
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Andrei A Fedorenko
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
4
|
Xi B, Luo MB, Vinokur VM, Hu X. Depinning Transition of a Domain Wall in Ferromagnetic Films. Sci Rep 2015; 5:14062. [PMID: 26365753 PMCID: PMC4568519 DOI: 10.1038/srep14062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/17/2015] [Indexed: 11/10/2022] Open
Abstract
We report first principle numerical study of domain wall (DW) depinning in two-dimensional magnetic film, which is modeled by 2D random-field Ising system with the dipole-dipole interaction. We observe nonconventional activation-type motion of DW and reveal the fractal structure of DW near the depinning transition. We determine scaling functions describing critical dynamics near the transition and obtain universal exponents establishing connection between thermal softening of pinning potential and critical dynamics. We observe that tuning the strength of the dipole-dipole interaction switches DW dynamics between two different universality classes, corresponding to two distinct dynamic regimes characterized by non-Arrhenius and conventional Arrhenius-type DW motions.
Collapse
Affiliation(s)
- Bin Xi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Valerii M. Vinokur
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Xiao Hu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba 305-0044, Japan
| |
Collapse
|
5
|
Fedorenko AA. Random-field and random-anisotropy O(N) spin systems with a free surface. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021131. [PMID: 23005746 DOI: 10.1103/physreve.86.021131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/12/2012] [Indexed: 06/01/2023]
Abstract
We study the surface scaling behavior of a semi-infinite d-dimensional O(N) spin system in the presence of a quenched random field and random anisotropy disorders. It is known that above the lower critical dimension d(LC) = 4 the infinite models undergo a paramagnetic-ferromagnetic transition for N > N(c) (N(c) = 2.835 for the random field and N(c) =9.441 for random anisotropy). For N < N(c) and d < d(LC) there exists a quasi-long-range-order phase with a zero order parameter and a power-law decay of spin correlations. Using a functional renormalization group, we derive the surface scaling laws that describe the ordinary surface transition for d > d(LC) and the long-range behavior of spin correlations near the surface in the quasi-long-range-order phase for d < d(LC). The corresponding surface exponents are calculated to one-loop order. The obtained results can be applied to the surface scaling of periodic elastic systems in disordered media, amorphous magnets, and (3)He-A in aerogel.
Collapse
Affiliation(s)
- Andrei A Fedorenko
- Laboratoire de Physique de l'Ecole Normale Supérieure de Lyon, Unité Mixte de Recherche No 5672 Associée au Centre National de la Recherche Scientifique, 46 Allée d'Italie, 69007 Lyon, France
| |
Collapse
|
6
|
Fedorenko A. Commentary on "Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium". PAPERS IN PHYSICS 2011. [DOI: 10.4279/pip.020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A Commentary on the paper by S. Bustinagorry and A. B. Kolton [Pap. Phys. 2, 020008 (2010)].Received: 25 November 2010, Accepted: 6 January 2011; Edited by: A. Vindigni; DOI: 10.4279/PIP.020009
Collapse
|
7
|
Le Doussal P, Wiese KJ. Size distributions of shocks and static avalanches from the functional renormalization group. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:051106. [PMID: 19518415 DOI: 10.1103/physreve.79.051106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Indexed: 05/27/2023]
Abstract
Interfaces pinned by quenched disorder are often used to model jerky self-organized critical motion. We study static avalanches, or shocks, defined here as jumps between distinct global minima upon changing an external field. We show how the full statistics of these jumps is encoded in the functional-renormalization-group fixed-point functions. This allows us to obtain the size distribution P(S) of static avalanches in an expansion in the internal dimension d of the interface. Near and above d=4 this yields the mean-field distribution P(S) approximately S;{-3/2}e;{-S4S_{m}} , where S_{m} is a large-scale cutoff, in some cases calculable. Resumming all one-loop contributions, we find P(S) approximately S;{-tau}exp(C(SS_{m});{1/2}-B/4(S/S_{m});{delta}) , where B , C , delta , and tau are obtained to first order in =4-d . Our result is consistent to O() with the relation tau=tau_{zeta}:=2-2/d+zeta , where zeta is the static roughness exponent, often conjectured to hold at depinning. Our calculation applies to all static universality classes, including random-bond, random-field, and random-periodic disorders. Extended to long-range elastic systems, it yields a different size distribution for the case of contact-line elasticity, with an exponent compatible with tau=2-1/d+zeta to O(=2-d) . We discuss consequences for avalanches at depinning and for sandpile models, relations to Burgers turbulence and the possibility that the relation tau=tau_{zeta} be violated to higher loop order. Finally, we show that the avalanche-size distribution on a hyperplane of codimension one is in mean field (valid close to and above d=4 ) given by P(S) approximately K_{13}(S)S , where K is the Bessel- K function, thus tau_{hyperplane}=4/3 .
Collapse
Affiliation(s)
- Pierre Le Doussal
- Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, CNRS, 24 rue Lhomond, 75231 Paris Cedex, France
| | | |
Collapse
|
8
|
Le Doussal P, Wiese KJ. Driven particle in a random landscape: disorder correlator, avalanche distribution, and extreme value statistics of records. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:051105. [PMID: 19518414 DOI: 10.1103/physreve.79.051105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Indexed: 05/27/2023]
Abstract
We review how the renormalized force correlator Delta(micro) , the function computed in the functional renormalization-group (RG) field theory, can be measured directly in numerics and experiments on the dynamics of elastic manifolds in the presence of pinning disorder. We show how this function can be computed analytically for a particle dragged through a one-dimensional random-force landscape. The limit of small velocity allows one to access the critical behavior at the depinning transition. For uncorrelated forces one finds three universality classes, corresponding to the three extreme value statistics, Gumbel, Weibull, and Fréchet. For each class we obtain analytically the universal function Delta(micro) , the corrections to the critical force, and the joint probability distribution of avalanche sizes s and waiting times w . We find P(s)=P(w) for all three cases. All results are checked numerically. For a Brownian force landscape, known as the Alessandro, Beatrice, Bertotti, and Montorsi (ABBM) model, avalanche distributions and Delta(micro) can be computed for any velocity. For two-dimensional disorder, we perform large-scale numerical simulations to calculate the renormalized force correlator tensor Delta_{ij}(micro[over ]) , and to extract the anisotropic scaling exponents zeta_{x}>zeta_{y} . We also show how the Middleton theorem is violated. Our results are relevant for the record statistics of random sequences with linear trends, as encountered, e.g., in some models of global warming. We give the joint distribution of the time s between two successive records and their difference in value w .
Collapse
Affiliation(s)
- Pierre Le Doussal
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex, France
| | | |
Collapse
|