1
|
Yu X, Zhang Y. A discrete fiber network finite element model of arterial elastin network considering inter-fiber crosslinking property and density. J Mech Behav Biomed Mater 2022; 134:105396. [PMID: 35963022 PMCID: PMC10368519 DOI: 10.1016/j.jmbbm.2022.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Inter-fiber crosslinks within the extracellular matrix (ECM) play important roles in determining the mechanical properties of the fibrous network. Discrete fiber network (DFN) models have been used to study fibrous biological material, however the contribution of inter-fiber crosslinks to the mechanics of the ECM network is not well understood. In this study, a DFN model of arterial elastin network was developed based on measured structural features to study the contribution of inter-fiber crosslinking properties and density to the mechanics and fiber kinematics of the network. The DFN was generated by randomly placing line segments into a given domain following a fiber orientation distribution function obtained from multiphoton microscopy until a desired fiber areal fraction was reached. Intersections between the line segments were treated as crosslinks. The generated DFN model was then incorporated into an ABAQUS finite element model to simulate the network under equi- and nonequi-biaxial deformation. The inter-fiber crosslinks were modeled using connector elements with either zero (pin joint) or infinite (weld joint) rotational stiffness. Furthermore, inter-fiber crosslinking density was systematically reduced and its effect on both network- and fiber-level mechanics was studied. The DFN model showed good fitting and predicting capabilities of the stress-strain behavior of the elastin network. While the pin and weld joints do not seem to have noticeable effect on the network stress-strain behavior, the crosslinking properties can affect the local fiber mechanics and kinematics. Overall, our study suggests that inter-fiber crosslinking properties are important to the multiscale mechanics and fiber kinematics of the ECM network.
Collapse
|
2
|
Yang S, Zhao C, Ren J, Zheng K, Shao Z, Ling S. Acquiring structural and mechanical information of a fibrous network through deep learning. NANOSCALE 2022; 14:5044-5053. [PMID: 35293414 DOI: 10.1039/d2nr00372d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fibrous networks play an essential role in the structure and properties of a variety of biological and engineered materials, such as cytoskeletons, protein filament-based hydrogels, and entangled or crosslinked polymer chains. Therefore, insight into the structural features of these fibrous networks and their constituent filaments is critical for discovering the structure-property-function relationships of these material systems. In this paper, a fibrous network-deep learning system (FN-DLS) is established to extract fibrous network structure information from atomic force microscopy images. FN-DLS accurately assesses the structural and mechanical characteristics of fibrous networks, such as contour length, number of nodes, persistence length, mesh size and fractal dimension. As an open-source system, FN-DLS is expected to serve a vast community of scientists working on very diverse disciplines and pave the way for new approaches on the study of biological and synthetic polymer and filament networks found in current applied and fundamental sciences.
Collapse
Affiliation(s)
- Shuo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Chenxi Zhao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Ke Zheng
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| |
Collapse
|
3
|
Amjad SN, Picu RC. Stress relaxation in network materials: the contribution of the network. SOFT MATTER 2022; 18:446-454. [PMID: 34913052 DOI: 10.1039/d1sm01546j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stress relaxation in network materials with permanent crosslinks is due to the transport of fluid within the network (poroelasticity), the viscoelasticity of the matrix and the viscoelasticity of the network. While relaxation associated with the matrix was studied extensively, the contribution of the network remains unexplored. In this work we consider two and three-dimensional stochastic fiber networks with viscoelastic fibers and explore the dependence of stress relaxation on network structure. We observe that relaxation has two regimes - an initial exponential regime, followed by a stretched exponential regime - similar to the situation in other disordered materials. The stretch exponent is a function of density, fiber diameter and the network structure, and has a minimum at the transition between the affine and non-affine regimes of network behavior. The relaxation time constant of the first, exponential regime is similar to the relaxation time constant of individual fibers and is independent of network density and fiber diameter. The relaxation time constant of the second, stretched exponential regime is a weak function of network parameters. The stretched exponential emerges from the heterogeneity of relaxation dynamics on scales comparable with the mesh size, with higher heterogeneity leading to smaller stretch exponents. In composite networks of fibers whose relaxation time constant is selected from a distribution with set mean, the stretch exponent decreases with increasing the coefficient of variation of the fiber time constant distribution. As opposed to thermal glass formers and colloids, in these athermal systems the dynamic heterogeneity is introduced by the network structure and does not evolve during relaxation. While in thermal systems the control parameter is the temperature, in this athermal case the control parameter is a non-dimensional structural parameter which describes the degree of non-affinity of the network.
Collapse
Affiliation(s)
- S N Amjad
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
4
|
Houghton MR, Walkley MA, Head DA. Anisotropic mechanical response of layered disordered fibrous materials. Phys Rev E 2020; 102:062502. [PMID: 33466009 DOI: 10.1103/physreve.102.062502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Mechanically bonded fabrics account for a significant portion of nonwoven products, and serve many niche areas of nonwoven manufacturing. Such fabrics are characterized by layers of disordered fibrous webs, but we lack an understanding of how such microstructures determine bulk material response. Here we numerically determine the linear shear response of needle-punched fabrics modeled as cross-linked sheets of two-dimensional (2D) Mikado networks. We systematically vary the intra-sheet fiber density, inter-sheet separation distance, and direction of shear, and quantify the macroscopic shear modulus alongside the degree of affinity and energy partition. For shear parallel to the sheets, the response is dominated by intrasheet fibers and follows known trends for 2D Mikado networks. By contrast, shears perpendicular to the sheets induce a softer response dominated by either intrasheet or intersheet fibers depending on a quadratic relation between sheet separation and fiber density. These basic trends are reproduced and elucidated by a simple scaling argument that we provide. We discuss the implications of our findings in the context of real nonwoven fabrics.
Collapse
Affiliation(s)
- M R Houghton
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - M A Walkley
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - D A Head
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
5
|
DeBenedictis EP, Zhang Y, Keten S. Structure and Mechanics of Bundled Semiflexible Polymer Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elizabeth P. DeBenedictis
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yao Zhang
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Lee SJJ, Nguyen DM, Grewal HS, Puligundla C, Saha AK, Nair PM, Cap AP, Ramasubramanian AK. Image-based analysis and simulation of the effect of platelet storage temperature on clot mechanics under uniaxial strain. Biomech Model Mechanobiol 2019; 19:173-187. [PMID: 31312933 DOI: 10.1007/s10237-019-01203-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/08/2019] [Indexed: 12/19/2022]
Abstract
Optimal strength and stability of blood clots are keys to hemostasis and in prevention of hemorrhagic or thrombotic complications. Clots are biocomposite materials composed of fibrin network enmeshing platelets and other blood cells. We have previously shown that the storage temperature of platelets significantly impacts clot structure and stiffness. The objective of this work is to delineate the relationship between morphological characteristics and mechanical response of clot networks. We examined scanning electron microscope images of clots prepared from fresh apheresis platelets, and from apheresis platelets stored for 5 days at room temperature or at 4 °C, suspended in pooled plasma. Principal component analysis of nine different morphometric parameters revealed that a single principal component (PC1) can distinguish the effect of platelet storage on clot ultrastructure. Finite element analysis of clot response to uniaxial strain was used to map the spatially heterogeneous distribution of strain energy density for each clot. At modest deformations (25% strain), a single principal component (PC2) was able to predict these heterogeneities as quantified by variability in strain energy density distribution and in linear elastic stiffness, respectively. We have identified structural parameters that are primary regulators of stress distribution, and the observations provide insights into the importance of spatial heterogeneity on hemostasis and thrombosis.
Collapse
Affiliation(s)
- Sang-Joon J Lee
- Department of Mechanical Engineering, San José State University, San Jose, CA, 95192, USA
| | - Dustin M Nguyen
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA, 95192, USA
| | - Harjot S Grewal
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA, 95192, USA
| | - Chaitanya Puligundla
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA, 95192, USA
| | - Amit K Saha
- Department of Biochemistry, Stanford University, Palo Alto, CA, 94304, USA
| | - Prajeeda M Nair
- Blood Research Program, US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, 78234, USA
| | - Andrew P Cap
- Blood Research Program, US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, 78234, USA
| | - Anand K Ramasubramanian
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA, 95192, USA.
| |
Collapse
|
7
|
Arzash S, Shivers JL, Licup AJ, Sharma A, MacKintosh FC. Stress-stabilized subisostatic fiber networks in a ropelike limit. Phys Rev E 2019; 99:042412. [PMID: 31108669 DOI: 10.1103/physreve.99.042412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 01/20/2023]
Abstract
The mechanics of disordered fibrous networks such as those that make up the extracellular matrix are strongly dependent on the local connectivity or coordination number. For biopolymer networks this coordination number is typically between 3 and 4. Such networks are sub-isostatic and linearly unstable to deformation with only central force interactions, but exhibit a mechanical phase transition between floppy and rigid states under strain. The introduction of weak bending interactions stabilizes these networks and suppresses the critical signatures of this transition. We show that applying external stress can also stabilize subisostatic networks with only tensile central force interactions, i.e., a ropelike potential. Moreover, we find that the linear shear modulus shows a power-law scaling with the external normal stress, with a non-mean-field exponent. For networks with finite bending rigidity, we find that the critical stain shifts to lower values under prestress.
Collapse
Affiliation(s)
- Sadjad Arzash
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Jordan L Shivers
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Albert J Licup
- Department of Physics & Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| | - Abhinav Sharma
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Fred C MacKintosh
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA.,Department of Physics & Astronomy, Vrije Universiteit, Amsterdam, The Netherlands.,Departments of Chemistry and Physics & Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
8
|
Amuasi HE, Fischer A, Zippelius A, Heussinger C. Linear rheology of reversibly cross-linked biopolymer networks. J Chem Phys 2018; 149:084902. [PMID: 30193493 DOI: 10.1063/1.5030169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We suggest a simple model for reversible cross-links, binding, and unbinding to/from a network of semiflexible polymers. The resulting frequency dependent response of the network to an applied shear is calculated via Brownian dynamics simulations. It is shown to be rather complex with the time scale of the linkers competing with the excitations of the network. If the lifetime of the linkers is the longest time scale, as is indeed the case in most biological networks, then a distinct low frequency peak of the loss modulus develops. The storage modulus shows a corresponding decay from its plateau value, which for irreversible cross-linkers extends all the way to the static limit. This additional relaxation mechanism can be controlled by the relative weight of reversible and irreversible linkers.
Collapse
Affiliation(s)
- Henry E Amuasi
- Institute of Theoretical Physics, Georg-August University of Göttingen, 37073 Göttingen, Germany
| | - Andreas Fischer
- Institute of Theoretical Physics, Georg-August University of Göttingen, 37073 Göttingen, Germany
| | - Annette Zippelius
- Institute of Theoretical Physics, Georg-August University of Göttingen, 37073 Göttingen, Germany
| | - Claus Heussinger
- Institute of Theoretical Physics, Georg-August University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
9
|
Hatami-Marbini H. Simulation of the mechanical behavior of random fiber networks with different microstructure. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:65. [PMID: 29796730 DOI: 10.1140/epje/i2018-11673-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Filamentous protein networks are broadly encountered in biological systems such as cytoskeleton and extracellular matrix. Many numerical studies have been conducted to better understand the fundamental mechanisms behind the striking mechanical properties of these networks. In most of these previous numerical models, the Mikado algorithm has been used to represent the network microstructure. Here, a different algorithm is used to create random fiber networks in order to investigate possible roles of architecture on the elastic behavior of filamentous networks. In particular, random fibrous structures are generated from the growth of individual fibers from random nucleation points. We use computer simulations to determine the mechanical behavior of these networks in terms of their model parameters. The findings are presented and discussed along with the response of Mikado fiber networks. We demonstrate that these alternative networks and Mikado networks show a qualitatively similar response. Nevertheless, the overall elasticity of Mikado networks is stiffer compared to that of the networks created using the alternative algorithm. We describe the effective elasticity of both network types as a function of their line density and of the material properties of the filaments. We also characterize the ratio of bending and axial energy and discuss the behavior of these networks in terms of their fiber density distribution and coordination number.
Collapse
Affiliation(s)
- H Hatami-Marbini
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, 60607, Chicago, IL, USA.
| |
Collapse
|
10
|
Sengab A, Picu RC. Filamentary structures that self-organize due to adhesion. Phys Rev E 2018; 97:032506. [PMID: 29776050 DOI: 10.1103/physreve.97.032506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Indexed: 06/08/2023]
Abstract
We study the self-organization of random collections of elastic filaments that interact adhesively. The evolution from an initial fully random quasi-two-dimensional state is controlled by filament elasticity, adhesion and interfilament friction, and excluded volume. Three outcomes are possible: the system may remain locked in the initial state, may organize into isolated fiber bundles, or may form a stable, connected network of bundles. The range of system parameters leading to each of these states is identified. The network of bundles is subisostatic and is stabilized by prestressed triangular features forming at bundle-to-bundle nodes, similar to the situation in foams. Interfiber friction promotes locking and expands the parametric range of nonevolving systems.
Collapse
Affiliation(s)
- A Sengab
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
11
|
Vahabi M, Vos BE, de Cagny HCG, Bonn D, Koenderink GH, MacKintosh FC. Normal stresses in semiflexible polymer hydrogels. Phys Rev E 2018; 97:032418. [PMID: 29776166 DOI: 10.1103/physreve.97.032418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 06/08/2023]
Abstract
Biopolymer gels such as fibrin and collagen networks are known to develop tensile axial stress when subject to torsion. This negative normal stress is opposite to the classical Poynting effect observed for most elastic solids including synthetic polymer gels, where torsion provokes a positive normal stress. As shown recently, this anomalous behavior in fibrin gels depends on the open, porous network structure of biopolymer gels, which facilitates interstitial fluid flow during shear and can be described by a phenomenological two-fluid model with viscous coupling between network and solvent. Here we extend this model and develop a microscopic model for the individual diagonal components of the stress tensor that determine the axial response of semiflexible polymer hydrogels. This microscopic model predicts that the magnitude of these stress components depends inversely on the characteristic strain for the onset of nonlinear shear stress, which we confirm experimentally by shear rheometry on fibrin gels. Moreover, our model predicts a transient behavior of the normal stress, which is in excellent agreement with the full time-dependent normal stress we measure.
Collapse
Affiliation(s)
- M Vahabi
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| | - Bart E Vos
- AMOLF, Department of Living Matter, 1098 XG Amsterdam
| | - Henri C G de Cagny
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel Bonn
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| | | | - F C MacKintosh
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Chemical & Biomolecular Engineering, Rice University, TX 77005 Houston, USA
- Center for Theoretical Biological Physics, Rice University, TX 77030 Houston, USA
- Departments of Chemistry and Physics & Astronomy, Rice University, TX 77005 Houston, USA
| |
Collapse
|
12
|
Picu RC, Deogekar S, Islam MR. Poisson's Contraction and Fiber Kinematics in Tissue: Insight From Collagen Network Simulations. J Biomech Eng 2018; 140:2663690. [PMID: 29131889 PMCID: PMC5816257 DOI: 10.1115/1.4038428] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/01/2017] [Indexed: 12/31/2022]
Abstract
Connective tissue mechanics is highly nonlinear, exhibits a strong Poisson's effect, and is associated with significant collagen fiber re-arrangement. Although the general features of the stress-strain behavior have been discussed extensively, the Poisson's effect received less attention. In general, the relationship between the microscopic fiber network mechanics and the macroscopic experimental observations remains poorly defined. The objective of the present work is to provide additional insight into this relationship. To this end, results from models of random collagen networks are compared with experimental data on reconstructed collagen gels, mouse skin dermis, and the human amnion. Attention is devoted to the mechanism leading to the large Poisson's effect observed in experiments. The results indicate that the incremental Poisson's contraction is directly related to preferential collagen orientation. The experimentally observed downturn of the incremental Poisson's ratio at larger strains is associated with the confining effect of fibers transverse to the loading direction and contributing little to load bearing. The rate of collagen orientation increases at small strains, reaches a maximum, and decreases at larger strains. The peak in this curve is associated with the transition of the network deformation from bending dominated, at small strains, to axially dominated, at larger strains. The effect of fiber tortuosity on network mechanics is also discussed, and a comparison of biaxial and uniaxial loading responses is performed.
Collapse
Affiliation(s)
- R. C. Picu
- Department of Mechanical, Aerospace
and Nuclear Engineering,
Rensselaer Polytechnic Institute,
Troy, NY 12180
e-mail:
| | - S. Deogekar
- Department of Mechanical, Aerospace and
Nuclear Engineering,
Rensselaer Polytechnic Institute,
Troy, NY 12180
e-mail:
| | - M. R. Islam
- Department of Mechanical, Aerospace and
Nuclear Engineering,
Rensselaer Polytechnic Institute,
Troy, NY 12180
e-mail:
| |
Collapse
|
13
|
Zhang Y, Feng J, Heizler SI, Levine H. Hindrances to precise recovery of cellular forces in fibrous biopolymer networks. Phys Biol 2018; 15:026001. [PMID: 29231177 DOI: 10.1088/1478-3975/aaa107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
How cells move through the three-dimensional extracellular matrix (ECM) is of increasing interest in attempts to understand important biological processes such as cancer metastasis. Just as in motion on flat surfaces, it is expected that experimental measurements of cell-generated forces will provide valuable information for uncovering the mechanisms of cell migration. However, the recovery of forces in fibrous biopolymer networks may suffer from large errors. Here, within the framework of lattice-based models, we explore possible issues in force recovery by solving the inverse problem: how can one determine the forces cells exert to their surroundings from the deformation of the ECM? Our results indicate that irregular cell traction patterns, the uncertainty of local fiber stiffness, the non-affine nature of ECM deformations and inadequate knowledge of network topology will all prevent the precise force determination. At the end, we discuss possible ways of overcoming these difficulties.
Collapse
Affiliation(s)
- Yunsong Zhang
- Department of Physics & Astronomy and Center for Theoretical Biological Physics, Rice University, Houston TX, 77030, United States of America
| | | | | | | |
Collapse
|
14
|
Sander M, Dobicki H, Ott A. Large Amplitude Oscillatory Shear Rheology of Living Fibroblasts: Path-Dependent Steady States. Biophys J 2017; 113:1561-1573. [PMID: 28978448 PMCID: PMC5627183 DOI: 10.1016/j.bpj.2017.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 06/12/2017] [Accepted: 07/10/2017] [Indexed: 01/16/2023] Open
Abstract
Mechanical properties of biological cells play a role in cell locomotion, embryonic tissue formation, and tumor migration among many other processes. Cells exhibit a complex nonlinear response to mechanical cues that is not understood. Cells may stiffen as well as soften, depending on the exact type of stimulus. Here we apply large-amplitude oscillatory shear to a monolayer of separated fibroblast cells suspended between two plates. Although we apply identical steady-state excitations, in response we observe different typical regimes that exhibit cell softening or cell stiffening to varying degrees. This degeneracy of the cell response can be linked to the initial paths that the instrument takes to go from cell rest to steady state. A model of cross-linked, force-bearing filaments submitted to steady-state excitation renders the different observed regimes with minor changes in parameters if the filaments are permitted to self-organize and form different spatially organized structures. We suggest that rather than a complex viscoelastic or plastic response, the different observed regimes reflect the emergence of different steady-state cytoskeletal conformations. A high sensitivity of the cytoskeletal rheology and structure to minor changes in parameters or initial conditions enables a cell to respond to mechanical requirements quickly and in various ways with only minor biochemical intervention. Probing path-dependent rheological changes constitutes a possibly very sensitive assessment of the cell cytoskeleton as a possible tool for medical diagnosis. Our observations show that the memory of subtle differences in earlier deformation paths must be taken into account when deciphering the cell mechanical response to large-amplitude deformations.
Collapse
Affiliation(s)
- Mathias Sander
- Biological Experimental Physics, Department of Physics, Saarland University, Saarbruecken, Germany
| | - Heike Dobicki
- Biological Experimental Physics, Department of Physics, Saarland University, Saarbruecken, Germany
| | - Albrecht Ott
- Biological Experimental Physics, Department of Physics, Saarland University, Saarbruecken, Germany.
| |
Collapse
|
15
|
Vahabi M, Sharma A, Licup AJ, van Oosten ASG, Galie PA, Janmey PA, MacKintosh FC. Elasticity of fibrous networks under uniaxial prestress. SOFT MATTER 2016; 12:5050-60. [PMID: 27174568 DOI: 10.1039/c6sm00606j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present theoretical and experimental studies of the elastic response of fibrous networks subjected to uniaxial strain. Uniaxial compression or extension is applied to extracellular networks of fibrin and collagen using a shear rheometer with free water in/outflow. Both uniaxial stress and the network shear modulus are measured. Prior work [van Oosten, et al., Sci. Rep., 2015, 6, 19270] has shown softening/stiffening of these networks under compression/extension, together with a nonlinear response to shear, but the origin of such behaviour remains poorly understood. Here, we study how uniaxial strain influences the nonlinear mechanics of fibrous networks. Using a computational network model with bendable and stretchable fibres, we show that the softening/stiffening behaviour can be understood for fixed lateral boundaries in 2D and 3D networks with comparable average connectivities to the experimental extracellular networks. Moreover, we show that the onset of stiffening depends strongly on the imposed uniaxial strain. Our study highlights the importance of both uniaxial strain and boundary conditions in determining the mechanical response of hydrogels.
Collapse
Affiliation(s)
- Mahsa Vahabi
- Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
16
|
Licup AJ, Sharma A, MacKintosh FC. Elastic regimes of subisostatic athermal fiber networks. Phys Rev E 2016; 93:012407. [PMID: 26871101 DOI: 10.1103/physreve.93.012407] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 11/07/2022]
Abstract
Athermal models of disordered fibrous networks are highly useful for studying the mechanics of elastic networks composed of stiff biopolymers. The underlying network architecture is a key aspect that can affect the elastic properties of these systems, which include rich linear and nonlinear elasticity. Existing computational approaches have focused on both lattice-based and off-lattice networks obtained from the random placement of rods. It is not obvious, a priori, whether the two architectures have fundamentally similar or different mechanics. If they are different, it is not clear which of these represents a better model for biological networks. Here, we show that both approaches are essentially equivalent for the same network connectivity, provided the networks are subisostatic with respect to central force interactions. Moreover, for a given subisostatic connectivity, we even find that lattice-based networks in both two and three dimensions exhibit nearly identical nonlinear elastic response. We provide a description of the linear mechanics for both architectures in terms of a scaling function. We also show that the nonlinear regime is dominated by fiber bending and that stiffening originates from the stabilization of subisostatic networks by stress. We propose a generalized relation for this regime in terms of the self-generated normal stresses that develop under deformation. Different network architectures have different susceptibilities to the normal stress but essentially exhibit the same nonlinear mechanics. Such a stiffening mechanism has been shown to successfully capture the nonlinear mechanics of collagen networks.
Collapse
Affiliation(s)
- A J Licup
- Department of Physics and Astronomy, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - A Sharma
- Department of Physics and Astronomy, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - F C MacKintosh
- Department of Physics and Astronomy, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
17
|
The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory. PLoS One 2015; 10:e0143011. [PMID: 26569603 PMCID: PMC4646616 DOI: 10.1371/journal.pone.0143011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/29/2015] [Indexed: 01/07/2023] Open
Abstract
Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials.
Collapse
|
18
|
Wigbers MC, MacKintosh FC, Dennison M. Stability and anomalous entropic elasticity of subisostatic random-bond networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042145. [PMID: 26565206 DOI: 10.1103/physreve.92.042145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Indexed: 06/05/2023]
Abstract
We study the elasticity of thermalized spring networks under an applied bulk strain. The networks considered are subisostatic random-bond networks that, in the athermal limit, are known to have vanishing bulk and linear shear moduli at zero bulk strain. Above a bulk strain threshold, however, these networks become rigid, although surprisingly the shear modulus remains zero until a second, higher, strain threshold. We find that thermal fluctuations stabilize all networks below the rigidity transition, resulting in systems with both finite bulk and shear moduli. Our results show a T(0.66) temperature dependence of the moduli in the region below the bulk strain threshold, resulting in networks with anomalously high rigidity as compared to ordinary entropic elasticity. Furthermore, we find a second regime of anomalous temperature scaling for the shear modulus at its zero-temperature rigidity point, where it scales as T(0.5), behavior that is absent for the bulk modulus since its athermal rigidity transition is discontinuous.
Collapse
Affiliation(s)
- M C Wigbers
- Department of Physics and Astronomy, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - F C MacKintosh
- Department of Physics and Astronomy, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - M Dennison
- Department of Physics and Astronomy, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Department of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
19
|
Pritchard RH, Huang YYS, Terentjev EM. Mechanics of biological networks: from the cell cytoskeleton to connective tissue. SOFT MATTER 2014; 10:1864-84. [PMID: 24652375 DOI: 10.1039/c3sm52769g] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
From the cell cytoskeleton to connective tissues, fibrous networks are ubiquitous in metazoan life as the key promoters of mechanical strength, support and integrity. In recent decades, the application of physics to biological systems has made substantial strides in elucidating the striking mechanical phenomena observed in such networks, explaining strain stiffening, power law rheology and cytoskeletal fluidisation - all key to the biological function of individual cells and tissues. In this review we focus on the current progress in the field, with a primer into the basic physics of individual filaments and the networks they form. This is followed by a discussion of biological networks in the context of a broad spread of recent in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Robyn H Pritchard
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| | | | | |
Collapse
|
20
|
Dennison M, Sheinman M, Storm C, MacKintosh FC. Fluctuation-stabilized marginal networks and anomalous entropic elasticity. PHYSICAL REVIEW LETTERS 2013; 111:095503. [PMID: 24033046 DOI: 10.1103/physrevlett.111.095503] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Indexed: 06/02/2023]
Abstract
We study the elastic properties of thermal networks of Hookean springs. In the purely mechanical limit, such systems are known to have a vanishing rigidity when their connectivity falls below a critical, isostatic value. In this work, we show that thermal networks exhibit a nonzero shear modulus G well below the isostatic point and that this modulus exhibits an anomalous, sublinear dependence on temperature T. At the isostatic point, G increases as the square root of T, while we find G∝Tα below the isostatic point, where α≃0.8. We show that this anomalous T dependence is entropic in origin.
Collapse
Affiliation(s)
- M Dennison
- Department of Physics and Astronomy, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
21
|
Shahsavari A, Picu RC. Model selection for athermal cross-linked fiber networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:011923. [PMID: 23005468 DOI: 10.1103/physreve.86.011923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/18/2012] [Indexed: 05/08/2023]
Abstract
Athermal random fiber networks are usually modeled by representing each fiber as a truss, a Euler-Bernoulli or a Timoshenko beam, and, in the case of cross-linked networks, each cross-link as a pinned, rotating, or welded joint. In this work we study the effect of these various modeling options on the dependence of the overall network stiffness on system parameters. We conclude that Timoshenko beams can be used for the entire range of density and beam stiffness parameters, while the Euler-Bernoulli model can be used only at relatively low network densities. In the high density-high bending stiffness range, strain energy is stored predominantly in the axial and shear deformation modes, while in the other extreme range of parameters, the energy is stored in the bending mode. The effect of the model size on the network stiffness is also discussed.
Collapse
Affiliation(s)
- A Shahsavari
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
22
|
Lück S, Fichtl A, Sailer M, Joos H, Brenner RE, Walther P, Schmidt V. Statistical analysis of the intermediate filament network in cells of mesenchymal lineage by greyvalue-oriented image segmentation. Comput Stat 2011. [DOI: 10.1007/s00180-011-0265-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Bai M, Missel AR, Levine AJ, Klug WS. On the role of the filament length distribution in the mechanics of semiflexible networks. Acta Biomater 2011; 7:2109-18. [PMID: 21187172 DOI: 10.1016/j.actbio.2010.12.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/14/2010] [Accepted: 12/20/2010] [Indexed: 11/29/2022]
Abstract
This paper explores the effects of filament length polydispersity on the mechanical properties of semiflexible crosslinked polymer networks. Extending previous studies on monodisperse networks, we compute numerically the response of crosslinked networks of elastic filaments of bimodal and exponential length distributions. These polydisperse networks are subject to the same affine to nonaffine (A/NA) transition observed previously for monodisperse networks, wherein the decreases in either crosslink density or bending stiffness lead to a shift from affine, stretching-dominated deformations to nonaffine, bending-dominated deformations. We find that the onset of this transition is generally more sensitive to changes in the density of longer filaments than shorter filaments, meaning that longer filaments have greater mechanical efficiency. Moreover, in polydisperse networks, mixtures of long and short filaments interact cooperatively to generally produce a nonaffine mechanical response closer to the affine prediction than comparable monodisperse networks of either long or short filaments. Accordingly, the mechanical affinity of polydisperse networks is dependent on the filament length composition. Overall, length polydispersity has the effect of sharpening and shifting the A/NA transition to lower network densities. We discuss the implications of these results on experimental observation of the A/NA transition, and on the design of advanced materials.
Collapse
Affiliation(s)
- Mo Bai
- Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
24
|
Huisman EM, Lubensky TC. Internal stresses, normal modes, and nonaffinity in three-dimensional biopolymer networks. PHYSICAL REVIEW LETTERS 2011; 106:088301. [PMID: 21405605 DOI: 10.1103/physrevlett.106.088301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Indexed: 05/30/2023]
Abstract
We numerically investigate deformations and modes of networks of semiflexible biopolymers as a function of crosslink coordination number z and strength of bending and stretching energies. In equilibrium filaments are under internal stress, and the networks exhibit shear rigidity below the Maxwell isostatic point. In contrast to two-dimensional networks, ours exhibit nonaffine bending-dominated response in all rigid states, including those near the maximum of z=4 when bending energies are less than stretching ones.
Collapse
Affiliation(s)
- E M Huisman
- Universiteit Leiden, Instituut-Lorentz, Postbus 9506, NL-2300 RA Leiden, The Netherlands
| | | |
Collapse
|
25
|
Arevalo RC, Urbach JS, Blair DL. Size-dependent rheology of type-I collagen networks. Biophys J 2011; 99:L65-7. [PMID: 20959077 DOI: 10.1016/j.bpj.2010.08.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/04/2010] [Accepted: 08/12/2010] [Indexed: 12/18/2022] Open
Abstract
We investigate the system size-dependent rheological response of branched type I collagen gels. When subjected to a shear strain, the highly interconnected mesh dynamically reorients, resulting in overall stiffening of the network. When a continuous shear strain is applied to a collagen network, we observe that the local apparent modulus, in the strain-stiffening regime, is strongly dependent on the gel thickness. In addition, we demonstrate that the overall network failure is determined by the ratio of the gel thickness to the mesh size. These findings have broad implications for cell-matrix interactions, the interpretation of rheological tissue data, and the engineering of biomimetic scaffolds.
Collapse
|
26
|
Huisman EM, Storm C, Barkema GT. Frequency-dependent stiffening of semiflexible networks: a dynamical nonaffine to affine transition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:061902. [PMID: 21230685 DOI: 10.1103/physreve.82.061902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/10/2010] [Indexed: 05/30/2023]
Abstract
By combining the force-extension relation of single semiflexible polymers with a Langevin equation to capture the dissipative dynamics of chains moving through a viscous medium we study the dynamical response of cross-linked biopolymer materials. We find that at low frequencies the network deformations are highly nonaffine, and show a low plateau in the modulus. At higher frequencies, this nonaffinity decreases while the elastic modulus increases. With increasing frequency, more and more nonaffine network relaxation modes are suppressed, resulting in a stiffening. This effect is fundamentally different from the high-frequency stiffening due to the single-filament relaxation modes [F. Gittes and F. C. MacKintosh, Phys. Rev. E 58, R1241 (1998)], not only in terms of its mechanism but also in its resultant scaling: G'(ω) ∼ ω(α) with α > 3/4. This may determine nonlinear material properties at low, physiologically relevant frequencies.
Collapse
Affiliation(s)
- E M Huisman
- Instituut-Lorentz, Universiteit Leiden, Postbus 9506, NL-2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
27
|
Sander E, Stein A, Swickrath M, Barocas V. Out of Many, One: Modeling Schemes for Biopolymer and Biofibril Networks. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2010. [DOI: 10.1007/978-1-4020-9785-0_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
LÜCK S, SAILER M, SCHMIDT V, WALTHER P. Three-dimensional analysis of intermediate filament networks using SEM tomography. J Microsc 2009; 239:1-16. [DOI: 10.1111/j.1365-2818.2009.03348.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Huisman EM, Storm C, Barkema GT. Monte Carlo study of multiply crosslinked semiflexible polymer networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:051801. [PMID: 19113143 DOI: 10.1103/physreve.78.051801] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Indexed: 05/27/2023]
Abstract
We present a method to generate realistic, three-dimensional networks of crosslinked semiflexible polymers. The free energy of these networks is obtained from the force-extension characteristics of the individual polymers and their persistent directionality through the crosslinks. A Monte Carlo scheme is employed to obtain isotropic, homogeneous networks that minimize the free energy and for which all of the relevant parameters can be varied: the persistence length and the contour length as well as the crosslinking length may be chosen at will. We also provide an initial survey of the mechanical properties of our networks subjected to shear strains, showing them to display the expected nonlinear stiffening behavior. Also, a key role for nonaffinity and its relation to order in the network is uncovered.
Collapse
Affiliation(s)
- E M Huisman
- Universiteit Leiden, Instituut-Lorentz, Postbus 9506, NL-2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
30
|
Beil M, Lück S, Fleischer F, Portet S, Arendt W, Schmidt V. Simulating the formation of keratin filament networks by a piecewise-deterministic Markov process. J Theor Biol 2008; 256:518-32. [PMID: 19014958 DOI: 10.1016/j.jtbi.2008.09.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 08/01/2008] [Accepted: 09/25/2008] [Indexed: 12/30/2022]
Abstract
Keratin intermediate filament networks are part of the cytoskeleton in epithelial cells. They were found to regulate viscoelastic properties and motility of cancer cells. Due to unique biochemical properties of keratin polymers, the knowledge of the mechanisms controlling keratin network formation is incomplete. A combination of deterministic and stochastic modeling techniques can be a valuable source of information since they can describe known mechanisms of network evolution while reflecting the uncertainty with respect to a variety of molecular events. We applied the concept of piecewise-deterministic Markov processes to the modeling of keratin network formation with high spatiotemporal resolution. The deterministic component describes the diffusion-driven evolution of a pool of soluble keratin filament precursors fueling various network formation processes. Instants of network formation events are determined by a stochastic point process on the time axis. A probability distribution controlled by model parameters exercises control over the frequency of different mechanisms of network formation to be triggered. Locations of the network formation events are assigned dependent on the spatial distribution of the soluble pool of filament precursors. Based on this modeling approach, simulation studies revealed that the architecture of keratin networks mostly depends on the balance between filament elongation and branching processes. The spatial distribution of network mesh size, which strongly influences the mechanical characteristics of filament networks, is modulated by lateral annealing processes. This mechanism which is a specific feature of intermediate filament networks appears to be a major and fast regulator of cell mechanics.
Collapse
Affiliation(s)
- Michael Beil
- Department of Internal Medicine I, University Hospital Ulm, D-89070 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Kwon RY, Lew AJ, Jacobs CR. A microstructurally informed model for the mechanical response of three-dimensional actin networks. Comput Methods Biomech Biomed Engin 2008; 11:407-18. [PMID: 18568835 DOI: 10.1080/10255840801888686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We propose a class of microstructurally informed models for the linear elastic mechanical behaviour of cross-linked polymer networks such as the actin cytoskeleton. Salient features of the models include the possibility to represent anisotropic mechanical behaviour resulting from anisotropic filament distributions, and a power law scaling of the mechanical properties with the filament density. Mechanical models within the class are parameterized by seven different constants. We demonstrate a procedure for determining these constants using finite element models of three-dimensional actin networks. Actin filaments and cross-links were modelled as elastic rods, and the networks were constructed at physiological volume fractions and at the scale of an image voxel. We show the performance of the model in estimating the mechanical behaviour of the networks over a wide range of filament densities and degrees of anisotropy.
Collapse
Affiliation(s)
- R Y Kwon
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
32
|
Heussinger C, Schaefer B, Frey E. Nonaffine rubber elasticity for stiff polymer networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:031906. [PMID: 17930270 DOI: 10.1103/physreve.76.031906] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Indexed: 05/12/2023]
Abstract
We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces ("stretching"). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of "floppy modes"-low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the emergent nonaffinity is given by the "fiber length" lf, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.
Collapse
Affiliation(s)
- Claus Heussinger
- Arnold-Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 München, Germany
| | | | | |
Collapse
|