König B, Ronsin OJJ, Harting J. Two-dimensional Cahn-Hilliard simulations for coarsening kinetics of spinodal decomposition in binary mixtures.
Phys Chem Chem Phys 2021;
23:24823-24833. [PMID:
34714899 DOI:
10.1039/d1cp03229a]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The evolution of the microstructure due to spinodal decomposition in phase separated mixtures has a strong impact on the final material properties. In the late stage of coarsening, the system is characterized by the growth of a single characteristic length scale L ∼ Ctα. To understand the structure-property relationship, the knowledge of the coarsening exponent α and the coarsening rate constant C is mandatory. Since the existing literature is not entirely consistent, we perform phase field simulations based on the Cahn-Hilliard equation. We restrict ourselves to binary mixtures using a symmetric Flory-Huggins free energy and a constant composition-independent mobility term and show that the coarsening for off-critical mixtures is slower than the expected t1/3-growth. Instead, we find α to be dependent on the mixture composition and associate this with the observed morphologies. Finally, we propose a model to describe the complete coarsening kinetics including the rate constant C.
Collapse