• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643668)   Today's Articles (342)   Subscriber (50586)
For: Oxtoby OF, Barashenkov IV. Moving solitons in the discrete nonlinear Schrödinger equation. Phys Rev E Stat Nonlin Soft Matter Phys 2007;76:036603. [PMID: 17930353 DOI: 10.1103/physreve.76.036603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 07/17/2007] [Indexed: 05/25/2023]
Number Cited by Other Article(s)
1
Parker R, Aceves A, Cuevas-Maraver J, Kevrekidis PG. Standing and traveling waves in a model of periodically modulated one-dimensional waveguide arrays. Phys Rev E 2023;108:024214. [PMID: 37723691 DOI: 10.1103/physreve.108.024214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023]
2
Sato M, Furusawa H, Soga Y, Sievers AJ. Propagating intrinsic localized mode in a cyclic, dissipative, self-dual one-dimensional nonlinear transmission line. Phys Rev E 2023;107:034202. [PMID: 37072939 DOI: 10.1103/physreve.107.034202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/14/2023] [Indexed: 04/20/2023]
3
Vakulchyk I, Fistul MV, Zolotaryuk Y, Flach S. Almost compact moving breathers with fine-tuned discrete time quantum walks. CHAOS (WOODBURY, N.Y.) 2018;28:123104. [PMID: 30599522 DOI: 10.1063/1.5060654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
4
James G. Travelling breathers and solitary waves in strongly nonlinear lattices. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018;376:20170138. [PMID: 30037936 PMCID: PMC6077854 DOI: 10.1098/rsta.2017.0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
5
Brox J, Kiefer P, Bujak M, Schaetz T, Landa H. Spectroscopy and Directed Transport of Topological Solitons in Crystals of Trapped Ions. PHYSICAL REVIEW LETTERS 2017;119:153602. [PMID: 29077428 DOI: 10.1103/physrevlett.119.153602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 06/07/2023]
6
Hennig H, Neff T, Fleischmann R. Dynamical phase diagram of Gaussian wave packets in optical lattices. Phys Rev E 2016;93:032219. [PMID: 27078356 DOI: 10.1103/physreve.93.032219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Indexed: 11/07/2022]
7
Sato M, Nakaguchi T, Ishikawa T, Shige S, Soga Y, Doi Y, Sievers AJ. Supertransmission channel for an intrinsic localized mode in a one-dimensional nonlinear physical lattice. CHAOS (WOODBURY, N.Y.) 2015;25:103122. [PMID: 26520088 DOI: 10.1063/1.4933329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
8
Dutta O, Gajda M, Hauke P, Lewenstein M, Lühmann DS, Malomed BA, Sowiński T, Zakrzewski J. Non-standard Hubbard models in optical lattices: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015;78:066001. [PMID: 26023844 DOI: 10.1088/0034-4885/78/6/066001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
9
Naether U, Vicencio RA, Johansson M. Peierls-Nabarro energy surfaces and directional mobility of discrete solitons in two-dimensional saturable nonlinear Schrödinger lattices. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011;83:036601. [PMID: 21517610 DOI: 10.1103/physreve.83.036601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Indexed: 05/30/2023]
10
Arévalo E. Soliton theory of two-dimensional lattices: the discrete nonlinear schrödinger equation. PHYSICAL REVIEW LETTERS 2009;102:224102. [PMID: 19658867 DOI: 10.1103/physrevlett.102.224102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Indexed: 05/28/2023]
11
Dmitriev SV, Khare A, Kevrekidis PG, Saxena A, Hadzievski L. High-speed kinks in a generalized discrete phi4 model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008;77:056603. [PMID: 18643182 DOI: 10.1103/physreve.77.056603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Indexed: 05/26/2023]
12
Palmero F, Carretero-González R, Cuevas J, Kevrekidis PG, Królikowski W. Solitons in one-dimensional nonlinear Schrödinger lattices with a local inhomogeneity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008;77:036614. [PMID: 18517550 DOI: 10.1103/physreve.77.036614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Indexed: 05/26/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA