1
|
Sneha Ravi A, Dalvi S. Liquid Marbles and Drops on Superhydrophobic Surfaces: Interfacial Aspects and Dynamics of Formation: A Review. ACS OMEGA 2024; 9:12307-12330. [PMID: 38524492 PMCID: PMC10956110 DOI: 10.1021/acsomega.3c07657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Liquid marbles (LMs) are droplets encapsulated with powders presenting varied roughness and wettability. These LMs have garnered a lot of attention due to their dual properties of leakage-free and quick transport on both solid and liquid surfaces. These droplets are in a Cassie-Baxter wetting state sitting on both roughness and air pockets existing between particles. They are also reminiscent of the state of a drop on a superhydrophobic (SH) surface. In this review, LMs and bare droplets on SH surfaces are comparatively investigated in terms of two aspects: interfacial and dynamical. LMs present a fascinating class of soft matter due to their superior interfacial activity and their remarkable stability. Inherently hydrophobic powders form stable LMs by simple rolling; however, particles with defined morphologies and chemistries contribute to the varied stability of LMs. The factors contributing to this interesting robustness with respect to bare droplets are then identified by tests of stability such as evaporation and compression. Next, the dynamics of the impact of a drop on a hydrophobic powder bed to form LMs is studied vis-à̀-vis that of drop impact on flat surfaces. The knowledge from drop impact phenomena on flat surfaces is used to build and complement insights to that of drop impact on powder surfaces. The maximum spread of the drop is empirically understood in terms of dimensionless numbers, and their drawbacks are highlighted. Various stages of drop impact-spreading, retraction and rebound, splashing, and final outcome-are systematically explored on both solid and hard surfaces. The implications of crater formation and energy dissipations are discussed in the case of granular beds. While the drop impact on solid surfaces is extensively reviewed, deep interpretation of the drop impact on granular surfaces needs to be improved. Additionally, the applications of each step in the sequence of drop impact phenomena on both substrates are also identified. Next, the criterion for the formation of peculiar jammed LMs was examined. Finally, the challenges and possible future perspectives are envisaged.
Collapse
Affiliation(s)
- Apoorva Sneha Ravi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| | - Sameer Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| |
Collapse
|
2
|
Carvalho DD, Lima NC, Franklin EM. Impact craters formed by spinning granular projectiles. Phys Rev E 2023; 108:054904. [PMID: 38115485 DOI: 10.1103/physreve.108.054904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/12/2023] [Indexed: 12/21/2023]
Abstract
Craters formed by the impact of agglomerated materials are commonly observed in nature, such as asteroids colliding with planets and moons. In this paper, we investigate how the projectile spin and cohesion lead to different crater shapes. For that, we carried out discrete element method computations of spinning granular projectiles impacting onto cohesionless grains for different bonding stresses, initial spins, and initial heights. We found that, as the bonding stresses decrease and the initial spin increases, the projectile's grains spread farther from the collision point, and in consequence, the crater shape becomes flatter, with peaks around the rim and in the center of the crater. Our results shed light on the dispersion of the projectile's material and the different shapes of craters found on Earth and other planetary environments.
Collapse
Affiliation(s)
- Douglas D Carvalho
- Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas (UNICAMP), Rua Mendeleyev, 200, CEP:13083-860, Campinas-SP, Brazil
| | - Nicolao C Lima
- Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas (UNICAMP), Rua Mendeleyev, 200, CEP:13083-860, Campinas-SP, Brazil
| | - Erick M Franklin
- Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas (UNICAMP), Rua Mendeleyev, 200, CEP:13083-860, Campinas-SP, Brazil
| |
Collapse
|
3
|
Carvalho DD, Lima NC, Franklin EM. Roles of packing fraction, microscopic friction, and projectile spin in cratering by impact. Phys Rev E 2023; 107:044901. [PMID: 37198868 DOI: 10.1103/physreve.107.044901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/06/2023] [Indexed: 05/19/2023]
Abstract
From small seeds falling from trees to asteroids colliding with planets and moons, the impact of projectiles onto granular targets occurs in nature at different scales. In this paper, we investigate open questions in the mechanics of granular cratering, in particular, the forces acting on the projectile and the roles of granular packing, grain-grain friction, and projectile spin. For that, we carried out discrete element method computations of the impact of solid projectiles on a cohesionless granular medium, where we varied the projectile and grain properties (diameter, density, friction, and packing fraction) for different available energies (within relatively small values). We found that a denser region forms below the projectile, pushing it back and causing its rebound by the end of its motion, and that solid friction affects considerably the crater morphology. Besides, we show that the penetration length increases with the initial spin of the projectile, and that differences in initial packing fractions can engender the diversity of scaling laws found in the literature. Finally, we propose an ad hoc scaling that collapsed our data for the penetration length and can perhaps unify existing correlations. Our results provide new insights into the formation of craters in granular matter.
Collapse
Affiliation(s)
- Douglas D Carvalho
- School of Mechanical Engineering, UNICAMP-University of Campinas, Rua Mendeleyev, 200 Campinas, SP, Brazil
| | - Nicolao C Lima
- School of Mechanical Engineering, UNICAMP-University of Campinas, Rua Mendeleyev, 200 Campinas, SP, Brazil
| | - Erick M Franklin
- School of Mechanical Engineering, UNICAMP-University of Campinas, Rua Mendeleyev, 200 Campinas, SP, Brazil
| |
Collapse
|
4
|
Design and Research Sowing Devices for Aerial Sowing of Forest Seeds with UAVs. INVENTIONS 2021. [DOI: 10.3390/inventions6040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modern unmanned aerial vehicles (UAV) can be effectively used for aerial sowing of forests. A feature of aerial sowing is the possibility of rapid reforestation at low costs, which is extremely important in the current environmental situation. The purpose of this study is to develop a set of sowing devices intended for use with UAVs. For this, the metering devices and seed distribution devices were analyzed, used on the UAV or having prospects for such use. The existing studies of metering devices, implemented by numerical methods, are analyzed. Further, the synthesis of eight different designs of sowing devices in the 3D CAD was carried out and their comparative assessment was completed in terms of mass and a set of technological parameters. Based on its results, a sowing device was selected that is most suitable for a specific given technology. Discrete Element Method (DEM) was used to simulate the workflow: imitation of loading of the sowing device, study of work in various modes, study of the process of impact interaction of seeds with the soil environment. The complex of developed sowing devices can provide sowing of almost any type of forest seeds within the framework of various technologies and soil climatic conditions.
Collapse
|
5
|
Busch A, Johansen ST. On the validity of the two-fluid-KTGF approach for dense gravity-driven granular flows as implemented in ANSYS Fluent R17.2. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Wyser E, Carrea D, Jaboyedoff M, Pudasaini SP. Cratering response during droplet impacts on granular beds. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:111. [PMID: 31444582 DOI: 10.1140/epje/i2019-11877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
This experimental work focuses on the cratering response of granular layers induced by liquid droplet impacts. A droplet impact results in severe granular layer deformation, crater formation and deposits in the vicinity of the impact center. High-precision three-dimensional imaging of the granular layer surface revealed important characteristics of liquid impacts on granular matter, such as singular asymmetric deformations of the layer. Our analysis also demonstrated that the impact energy and the granular packing, and its inherent compressibility, are not the unique parameters controlling the bed response, for which granular fraction heterogeneities may induce strong variations. Such heterogeneous conditions primarily influence the magnitude but not the dynamics of liquid impacts on granular layers. Finally, a general equation can be used to relate the enery released during cratering to both the impact energy and the compressibility of the granular matter. However, our results do not support any transition triggered by the compaction-dilation regime. Hence, higly detailed numerical simulations could provide considerable insights regarding the remaining questions related to heterogeneous packing conditions and its influence over the bulk compressibility and the compaction-dilation phase transition.
Collapse
Affiliation(s)
- Emmanuel Wyser
- University of Lausanne, Institute of Earth Sciences, Lausanne, Switzerland.
| | - Dario Carrea
- University of Lausanne, Institute of Earth Sciences, Lausanne, Switzerland
| | - Michel Jaboyedoff
- University of Lausanne, Institute of Earth Sciences, Lausanne, Switzerland
| | - Shiva P Pudasaini
- University of Bonn, Institute of Geosciences, Geophysics Section, Bonn, Germany
| |
Collapse
|
7
|
Pacheco-Vázquez F. Ray Systems and Craters Generated by the Impact of Nonspherical Projectiles. PHYSICAL REVIEW LETTERS 2019; 122:164501. [PMID: 31075016 DOI: 10.1103/physrevlett.122.164501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The impact of a spherical projectile on an evened-out granular bed generates a uniform ejecta of material and a crater with a raised circular rim. Recently, Sabuwala et al. [Phys. Rev. Lett. 120, 264501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.264501] found that the uniform blanket of ejecta changes to a set of radial streaks when a spherical body impacts on an undulated granular surface, being a plausible explanation to the enigmatic ray systems on planetary bodies. Here, we show that ray systems can also be generated by the impact of nonspherical projectiles on a flat granular surface. This is a reasonable explanation considering that meteorites are rarely spherical. Moreover, by impacting bodies of different geometries, we show that the crater size follows the same power-law scaling with the impact energy found for spherical projectiles, and the crater rim becomes circular as the impact energy is increased regardless of the projectile shape, which helps to understand why most impact craters in nature are rounded.
Collapse
Affiliation(s)
- F Pacheco-Vázquez
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| |
Collapse
|
8
|
Marston JO, Pacheco-Vázquez F. Millimetric granular craters from pulsed laser ablation. Phys Rev E 2019; 99:030901. [PMID: 30999424 DOI: 10.1103/physreve.99.030901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 11/07/2022]
Abstract
This Rapid Communication reports on an experimental study of granular craters formed by a mechanism, namely, optical energy, via a pulsed laser focused onto the surface of a granular bed. This represents an insight into granular cratering for two reasons; first, there is no physical contact between the initiation mechanism and the granular media (as typical for impact or explosion craters). Second, the resulting craters are millimetric in scale, which facilitates a test of energy scalings down to a previously unobserved lengthscale. Indeed, we observe a range of energy scalings conforming to D_{c}∼E^{β} with β≈0.31-0.43 depending on the characteristics of the granular media.
Collapse
Affiliation(s)
- J O Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - F Pacheco-Vázquez
- Insituto de Fisica, Benemerita Universidad Autonoma de Puebla, Puebla 72570, Mexico
| |
Collapse
|
9
|
Matsuda Y, Fukui S, Kamiya R, Yamaguchi H, Niimi T. Impact cratering on a granular bed by hydrogel spheres having intermediate property between solid and liquid. Phys Rev E 2019; 99:032906. [PMID: 30999510 DOI: 10.1103/physreve.99.032906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 11/07/2022]
Abstract
We investigated the low speed impact on a granular bed by a hydrogel sphere and especially focused on the resultant crater diameter. Though the crater diameter depends only on the impact kinetic energy for the solid sphere impact cratering, it also depends on the elastic energy for the hydrogel sphere. The hydrogel sphere impact cratering is classified into two dynamics: small and large indentation of the sphere. For the small indentation, the crater diameter is proportional to the 1/4 power of the energy for ejecting granular materials, which is calculated by substituting the elastic energy stored in the sphere from the impact kinetic energy. Considering the force balance between the inertial force and the indentation, we derived the relation between the impact kinetic energy, Young's modulus, and the crater diameter. In the large limit of Young's modulus, the relation leads to the 1/4 power law observed in solid sphere impact. The dependency of Young's modulus on the crater diameter for the large indentation of the sphere is larger than the impact with small indentation.
Collapse
Affiliation(s)
- Yu Matsuda
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Satoru Fukui
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Ryota Kamiya
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Hiroki Yamaguchi
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Tomohide Niimi
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
10
|
Ye X, Wang D, Zheng X. Effect of packing fraction on dynamic characteristics of granular materials under oblique impact. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.07.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Pacheco-Vázquez F, Tacumá A, Marston JO. Craters produced by explosions in a granular medium. Phys Rev E 2017; 96:032904. [PMID: 29346862 DOI: 10.1103/physreve.96.032904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 06/07/2023]
Abstract
We report on an experimental investigation of craters generated by explosions at the surface of a model granular bed. Following the initial blast, a pressure wave propagates through the bed, producing high-speed ejecta of grains and ultimately a crater. We analyzed the crater morphology in the context of large-scale explosions and other cratering processes. The process was analyzed in the context of large-scale explosions, and the crater morphology was compared with those resulting from other cratering processes in the same energy range. From this comparison, we deduce that craters formed through different mechanisms can exhibit fine surface features depending on their origin, at least at the laboratory scale. Moreover, unlike laboratory-scale craters produced by the impact of dense spheres, the diameter and depth do not follow a 1/4-power-law scaling with energy, rather the exponent observed herein is approximately 0.30, as has also been found in large-scale events. Regarding the ejecta curtain of grains, its expansion obeys the same time dependence followed by shock waves produced by underground explosions. Finally, from experiments in a two-dimensional system, the early cavity growth is analyzed and compared to a recent study on explosions at the surface of water.
Collapse
Affiliation(s)
- F Pacheco-Vázquez
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| | - A Tacumá
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| | - J O Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
12
|
de Jong R, Zhao SC, van der Meer D. Crater formation during raindrop impact on sand. Phys Rev E 2017; 95:042901. [PMID: 28505774 DOI: 10.1103/physreve.95.042901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 11/07/2022]
Abstract
After a raindrop impacts on a granular bed, a crater is formed as both drop and target deform. After an initial, transient, phase in which the maximum crater depth is reached, the crater broadens outwards until a final steady shape is attained. By varying the impact velocity of the drop and the packing density of the bed, we find that avalanches of grains are important in the second phase and hence affect the final crater shape. In a previous paper, we introduced an estimate of the impact energy going solely into sand deformation and here we show that both the transient and final crater diameter collapse with this quantity for various packing densities. The aspect ratio of the transient crater is however altered by changes in the packing fraction.
Collapse
Affiliation(s)
- Rianne de Jong
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Song-Chuan Zhao
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Devaraj van der Meer
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
13
|
Ye X, Wang D, Zheng X. Criticality of post-impact motions of a projectile obliquely impacting a granular medium. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2016.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Tiwari M, Mohan TRK, Sen S. Drag-force regimes in granular impact. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062202. [PMID: 25615080 DOI: 10.1103/physreve.90.062202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Indexed: 06/04/2023]
Abstract
We study the penetration dynamics of a projectile incident normally on a substrate comprising of smaller granular particles in three-dimensions using the discrete element method. Scaling of the penetration depth is consistent with experimental observations for small velocity impacts. Our studies are consistent with the observation that the normal or drag force experienced by the penetrating grain obeys the generalized Poncelet law, which has been extensively invoked in understanding the drag force in the recent experimental data. We find that the normal force experienced by the projectile consists of position and kinetic-energy-dependent pieces. Three different penetration regimes are identified in our studies for low-impact velocities. The first two regimes are observed immediately after the impact and in the early penetration stage, respectively, during which the drag force is seen to depend on the kinetic energy. The depth dependence of the drag force becomes significant in the third regime when the projectile is moving slowly and is partially immersed in the substrate. These regimes relate to the different configurations of the bed: the initial loose surface packed state, fluidized bed below the region of impact, and the state after the crater formation commences.
Collapse
Affiliation(s)
- Mukesh Tiwari
- Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), 382007 Gandhinagar, India
| | - T R Krishna Mohan
- CSIR Centre for Mathematical Modelling and Computer Simulation (C-MMACS), Bangalore 560017, India
| | - Surajit Sen
- Department of Physics, State University of New York, Buffalo, New York 14260-1500, USA
| |
Collapse
|
15
|
Long EJ, Hargrave GK, Cooper JR, Kitchener BGB, Parsons AJ, Hewett CJM, Wainwright J. Experimental investigation into the impact of a liquid droplet onto a granular bed using three-dimensional, time-resolved, particle tracking. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032201. [PMID: 24730831 DOI: 10.1103/physreve.89.032201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Indexed: 06/03/2023]
Abstract
An experimental investigation into the interaction that occurs between an impacting water droplet and a granular bed of loose graded sand has been carried out. High-speed imaging, three-dimensional time-resolved particle tracking, and photogrammetric surface profiling have been used to examine individual impact events. The focus of the study is the quantification and trajectory analysis of the particles ejected from the sand bed, along with measurement of the change in bed morphology. The results from the experiments have detailed two distinct mechanisms of particle ejection: the ejection of water-encapsulated particles from the edge of the wetted region and the ejection of dry sand from the periphery of the impact crater. That the process occurs by these two distinct mechanisms has hitherto been unobserved. Presented in the paper are distributions of the particle ejection velocities, angles, and transport distances for both mechanisms. The ejected water-encapsulated particles, which are few in number, are characterized by low ejection angles and high ejection velocities, leading to large transport distances; the ejected dry particles, which are much greater in number, are characterized by high ejection angles and low velocities, leading to lower transport distances. From the particle ejection data, the momentum of the individual ballistic sand particles has been calculated; it was found that only 2% of the water-droplet momentum at impact is transferred to the ballistic sand particles. In addition to the particle tracking, surface profiling of the granular bed postimpact has provided detailed information on its morphology; these data have demonstrated the consistent nature of the craters produced by the impact and suggest that particle agglomerations released from their edges make up about twice the number of particles involved in ballistic ejection. It is estimated that, overall, about 4% of the water-droplet momentum is taken up in particle movement.
Collapse
Affiliation(s)
- Edward J Long
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, United Kingdom
| | - Graham K Hargrave
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, United Kingdom
| | - James R Cooper
- School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ben G B Kitchener
- Department of Geography, University of Sheffield, Sheffield, United Kingdom
| | - Anthony J Parsons
- Department of Geography, University of Sheffield, Sheffield, United Kingdom
| | | | - John Wainwright
- Department of Geography, Durham University, Durham, United Kingdom
| |
Collapse
|
16
|
Takita H, Sumita I. Low-velocity impact cratering experiments in a wet sand target. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022203. [PMID: 24032824 DOI: 10.1103/physreve.88.022203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Indexed: 06/02/2023]
Abstract
Low-velocity impact cratering experiments were conducted in a wet sand target. With the addition of interstitial water, the sand stiffens and the yield stress σ(y) increases by a factor of 10 and we observe a significant change in the resulting crater shape. A small water saturation (S~0.02) is sufficient to inhibit the crater wall collapse, which causes the crater diameter d to decrease and the crater depth to increase, and results in the steepening of the crater wall. With a further addition of water (S~0.04), the collapse is completely inhibited such that cylindrical craters form and the impactor penetration depth δ and ejecta dispersal are suppressed. However, for S>0.7, the wet sand becomes fluidized such that both d and δ increase thereafter. Comparing the relevant stresses, we find that cylindrical craters form when the yield stress is more than about three times larger than the gravitational stress such that it can withstand collapse. Experiments with different impactor sizes D and velocities indicate that for S≤0.02, gravity-regime scaling applies for d. However, the scaling gradually fails as S increases. In contrast, we find that δ/D can be scaled by the inertial stress normalized by the yield stress, for a wide range of S. This difference in the scaling is interpreted as arising from d being affected by whether or not the crater wall collapses, whereas δ is determined by the penetration process that occurs prior to collapse. The experimental parameter space in terms of dimensionless numbers indicates that our experiments may correspond to impact cratering in small asteroids.
Collapse
Affiliation(s)
- Haruna Takita
- Division of Earth and Environmental Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | | |
Collapse
|
17
|
Ruiz-Suárez JC. Penetration of projectiles into granular targets. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:066601. [PMID: 23660625 DOI: 10.1088/0034-4885/76/6/066601] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Energetic collisions of subatomic particles with fixed or moving targets have been very valuable to penetrate into the mysteries of nature. But the mysteries are quite intriguing when projectiles and targets are macroscopically immense. We know that countless debris wandering in space impacted (and still do) large asteroids, moons and planets; and that millions of craters on their surfaces are traces of such collisions. By classifying and studying the morphology of such craters, geologists and astrophysicists obtain important clues to understand the origin and evolution of the Solar System. This review surveys knowledge about crater phenomena in the planetary science context, avoiding detailed descriptions already found in excellent papers on the subject. Then, it examines the most important results reported in the literature related to impact and penetration phenomena in granular targets obtained by doing simple experiments. The main goal is to discern whether both schools, one that takes into account the right ingredients (planetary bodies and very high energies) but cannot physically reproduce the collisions, and the other that easily carries out the collisions but uses laboratory ingredients (small projectiles and low energies), can arrive at a synergistic intersection point.
Collapse
|
18
|
Analytical and Experimental Analysis of a Free Link in Contact with a Granular Medium. ScientificWorldJournal 2013; 2013:808574. [PMID: 24302871 PMCID: PMC3835820 DOI: 10.1155/2013/808574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/09/2013] [Indexed: 11/17/2022] Open
Abstract
In this study, the experimental and the simulation results for a planar free link impacting a granular medium are analyzed. The resistance force of the granular medium on the body from the moment of the impact until the body stops is very important. Horizontal and vertical static resistance forces developed by theoretical and empirical approaches are considered. The penetrating depth of the impacting end of the free link increases with the increase of the initial impacting velocity. We define the stopping time as the time interval from the moment of impact until the vertical velocity of the link end is zero. The stopping time of the end decreases as the initial velocity increases. The faster the end of the link impacts the surface of the granular medium, the sooner it will come to a stop. This phenomenon involves how rapidly a free link strikes the granular medium and how it slows down upon contact.
Collapse
|
19
|
Ye X, Wang D, Zheng X. Influence of particle rotation on the oblique penetration in granular media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061304. [PMID: 23367929 DOI: 10.1103/physreve.86.061304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Indexed: 06/01/2023]
Abstract
The rotation of a particle has significant influence on the dynamic response of a granular bed subjected to the oblique impact of a spherical projectile. Based on the discrete element method, the dynamical behavior of two-dimensional granular media impacted obliquely by rotating particles has been examined in this work, especially for the influence of rotational angular velocity on its penetration depth. The simulations show that the incident rotational velocity will not only act on the characteristics of velocity distribution of the bed after impacting, but also influence the trajectory of the projectile qualitatively. For low angular velocities, particle rotations will significantly increase the vertical penetration depths, while the different directions of rotation will exert opposite effects on the horizontal penetration depths. In addition, the influence of particle rotation on its penetration depth will be enhanced with increasing angular velocity, but such effect will reach an asymptotic plateau for sufficiently large angular velocities. This indicates that the angular velocity has an obvious criticality. Furthermore, the variation of critical angular velocity may be linear with the impact velocity and square with the impacting angle, approximately. Finally, the influence of the initial particle rotation on the scaling law of penetration depth is also considered, and we find that the linear scaling with impact velocity is still applicable for most impact conditions.
Collapse
Affiliation(s)
- Xiaoyan Ye
- Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, and Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | | | | |
Collapse
|
20
|
Wang D, Ye X, Zheng X. The scaling and dynamics of a projectile obliquely impacting a granular medium. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:7. [PMID: 22286560 DOI: 10.1140/epje/i2012-12007-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 01/16/2012] [Indexed: 05/31/2023]
Abstract
In this paper, the dynamics of a spherical projectile obliquely impacting into a two-dimensional granular bed is numerically investigated using the discrete element method. The influences of projectile's initial velocities and impacting angles are mainly considered. Numerical results show that the relationship between the final penetration depth and the initial impact velocity is very similar to that in the vertical-impact case. However, the dependence of the stopping time on the impact velocity of the projectile exhibits critical characteristics at different impact angles: the stopping time approximately increases linearly with the impact velocity for small impact angles but decreases in an exponential form for larger impact angles, which demonstrates the existence of two different regimes at low and high impact angles. When the impact angle is regarded as a parametric variable, a phenomenological force model at large impact angles is eventually proposed based on the simulation results, which can accurately describe the nature of the resistance force exerted on the projectile by the granular medium at different impact angels during the whole oblique-impact process. The degenerate model agrees well with the existing experimental results in the vertical-impact cases.
Collapse
Affiliation(s)
- Dengming Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou, 730000, Gansu, China
| | | | | |
Collapse
|
21
|
Tabuteau H, Sikorski D, de Vet SJ, de Bruyn JR. Impact of spherical projectiles into a viscoplastic fluid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031403. [PMID: 22060367 DOI: 10.1103/physreve.84.031403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/12/2011] [Indexed: 05/31/2023]
Abstract
We study the behavior of a yield-stress fluid following the impact of a vertically falling sphere. Since the impact produces shear stresses larger than the yield stress, the material in the vicinity of the impact becomes fluidized. The sphere entrains air when it enters the fluid, and the resulting cavity pinches off below the surface. The upper part of this cavity then rebounds upward. For sufficiently fast impacts, a vertical jet is produced by the cavity collapse. While many aspects of this process are similar to that in Newtonian fluids or granular materials, the rheological properties of our target material change the scaling of the cavity pinch-off depth and have a dramatic effect on the height of the jets. The material returns to a solid-like behavior once the stresses due to the impact have relaxed to below the yield stress, leaving a crater in the surface of the material. We find that the diameter of this crater depends nonmonotonically on the impact speed. The crater shape also changes with speed, reflecting the dynamics of the impact process.
Collapse
Affiliation(s)
- Hervé Tabuteau
- Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada N6A 3K7
| | | | | | | |
Collapse
|
22
|
Marston J, Thoroddsen S, Ng W, Tan R. Experimental study of liquid drop impact onto a powder surface. POWDER TECHNOL 2010. [DOI: 10.1016/j.powtec.2010.05.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
de Vet SJ, Yohannes B, Hill KM, de Bruyn JR. Collapse of a rectangular well in a quasi-two-dimensional granular bed. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:041304. [PMID: 21230270 DOI: 10.1103/physreve.82.041304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/07/2010] [Indexed: 05/30/2023]
Abstract
We report on an experimental and numerical study of the collapse under gravity of a rectangular well in a quasi-two-dimensional granular bed. For comparison, we also perform experiments on the collapse of a single vertical step. Experiments are conducted in a vertical Hele-Shaw cell, which allows the flow to be recorded from the side using high-speed video. If the rectangular well is sufficiently narrow, the collapsing sidewalls collide at the center of the well and the dynamics of the collapse are dependant on the aspect ratio of the initial well. We follow the evolution of the free surface from the video images, and use particle image velocimetry to determine the subsurface velocity field. From these data, the potential and kinetic energy of the system are calculated. We observe two stages to the collapse flow: an initial gravity-dominated stage, during which the kinetic energy increases, and a later dissipation-dominated phase during which the kinetic energy decreases. We find that although both the width and depth of the depression that remains after the well has collapsed depend on the initial aspect ratio, the surface profiles are self-similar; that is, the shape of the final profile is independent of the aspect ratio of the initial well. We model the collapse of the well using a depth-averaged continuum model with basal friction and with a discrete element model. Both models give results which agree well with experiment. The discrete element model indicates that friction between the particles is the most important source of dissipation over the course of the collapse.
Collapse
Affiliation(s)
- Simon J de Vet
- Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada N6A 3K7.
| | | | | | | |
Collapse
|
24
|
Deng YH, Wylie JJ, Zhang Q. Deflection of a dilute stream of particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:011307. [PMID: 20866611 DOI: 10.1103/physreve.82.011307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 04/21/2010] [Indexed: 05/29/2023]
Abstract
We consider a two-dimensional system in which a dilute stream of particles collides with an oblique planar wall. Both collisions between particles and collisions between particles and the wall are inelastic. We perform numerical simulations in two dimensions and show that the mean force experienced by the wall can be a nonmonotonic function of the angle between the wall and the particle stream. We show that this occurs because particles that rebound from the wall can collide with incoming particles and be scattered. This kind of particle-particle collision can reduce the force experienced by the wall. We refer to this effect as shielding. Furthermore, we show that the force experienced by the wall may be an increasing, decreasing or nonmonotonic function of the restitution coefficient in particle-particle collisions. We derive an exact solution for the mean force on the wall if the system is dilute, and the theoretical prediction is found to be in good agreement with our numerical results. The theory allows us to explicitly quantify the effects of shielding, and thus to explain a number of interesting features. The theory generally provides a useful upper bound for the mean force.
Collapse
Affiliation(s)
- Yu Hui Deng
- Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong.
| | | | | |
Collapse
|
25
|
Umbanhowar P, Goldman DI. Granular impact and the critical packing state. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:010301. [PMID: 20866553 DOI: 10.1103/physreve.82.010301] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Indexed: 05/29/2023]
Abstract
Impact dynamics during collisions of spheres with granular media reveal a pronounced and nontrivial dependence on volume fraction ϕ. Postimpact crater morphology identifies the critical packing state ϕcps, where sheared grains neither dilate nor consolidate, and indicates an associated change in spatial response. Current phenomenological models fail to capture the observed impact force for most ϕ; only near ϕcps is force separable into additive terms linear in depth and quadratic in velocity. At fixed depth the quadratic drag coefficient decreases (increases) with depth for ϕ<ϕcps (ϕ>ϕcps). At fixed low velocity, depth dependence of force shows a Janssen-type exponential response with a length scale that decreases with increasing ϕ and is nearly constant for ϕ>ϕcps.
Collapse
Affiliation(s)
- Paul Umbanhowar
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
26
|
Katsuragi H. Morphology scaling of drop impact onto a granular layer. PHYSICAL REVIEW LETTERS 2010; 104:218001. [PMID: 20867137 DOI: 10.1103/physrevlett.104.218001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Indexed: 05/29/2023]
Abstract
We investigate the impact of a free-falling water drop onto a granular layer. First, we constructed a phase diagram of crater shapes with two control parameters, impact speed and grain size. A low-speed impact makes a deeper cylindrical crater in a fluffy granular target. After high-speed impacts, we observed a convex bump higher than the initial surface level instead of a crater. The inner ring can be also observed in a medium impact speed regime. Quantitatively, we found a scaling law for a crater radius with a dimensionless number consisting of impact speed and density ratio between the bulk granular layer and water drop. This scaling demonstrates that the water drop deformation is crucial to understanding the crater morphology.
Collapse
Affiliation(s)
- Hiroaki Katsuragi
- Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
27
|
von Kann S, Joubaud S, Caballero-Robledo GA, Lohse D, van der Meer D. Effect of finite container size on granular jet formation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:041306. [PMID: 20481716 DOI: 10.1103/physreve.81.041306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Indexed: 05/29/2023]
Abstract
When an object is dropped into a bed of fine, loosely packed sand, a surprisingly energetic jet shoots out of the bed. In this work we study the effect that boundaries have on the granular jet formation. We did this by (i) decreasing the depth of the sand bed and (ii) reducing the container diameter to only a few ball diameters. These confinements change the behavior of the ball inside the bed, the void collapse, and the resulting jet height and shape. We map the parameter space of impact with Froude number, ambient pressure, and container dimensions as parameters. From these results we propose an explanation for the thick-thin structure of the jet reported by several groups ([J. R. Royer, Nat. Phys. 1, 164 (2005)], [G. Caballero, Phys. Rev. Lett. 99, 018001 (2007)], and [J. O. Marston, Phys. Fluids 20, 023301 (2008)]).
Collapse
Affiliation(s)
- Stefan von Kann
- Physics of Fluids group, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Deboeuf S, Gondret P, Rabaud M. Dynamics of grain ejection by sphere impact on a granular bed. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:041306. [PMID: 19518223 DOI: 10.1103/physreve.79.041306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Indexed: 05/27/2023]
Abstract
The dynamics of grain ejection consecutive to a sphere impacting a granular material is investigated experimentally and the variations of the characteristics of grain ejection with the control parameters are quantitatively studied. The time evolution of the corona formed by the ejected grains is reported, mainly in terms of its diameter and height, and favorably compared with a simple ballistic model. A key characteristic of the granular corona is that the angle formed by its edge with the horizontal granular surface remains constant during the ejection process, which again can be reproduced by the ballistic model. The number and the kinetic energy of the ejected grains are evaluated and allow for the calculation of an effective restitution coefficient characterizing the complex collision process between the impacting sphere and the fine granular target. The effective restitution coefficient is found to be constant when varying the control parameters.
Collapse
Affiliation(s)
- S Deboeuf
- University Paris-Sud, CNRS, Lab. FAST, UMR 7608, Bâtiment 502, Campus Universitaire, 91405 Orsay, France
| | | | | |
Collapse
|
29
|
From the Cover: Sensitive dependence of the motion of a legged robot on granular media. Proc Natl Acad Sci U S A 2009; 106:3029-34. [PMID: 19204285 DOI: 10.1073/pnas.0809095106] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legged locomotion on flowing ground (e.g., granular media) is unlike locomotion on hard ground because feet experience both solid- and fluid-like forces during surface penetration. Recent bioinspired legged robots display speed relative to body size on hard ground comparable with high-performing organisms like cockroaches but suffer significant performance loss on flowing materials like sand. In laboratory experiments, we study the performance (speed) of a small (2.3 kg) 6-legged robot, SandBot, as it runs on a bed of granular media (1-mm poppy seeds). For an alternating tripod gait on the granular bed, standard gait control parameters achieve speeds at best 2 orders of magnitude smaller than the 2 body lengths/s (approximately 60 cm/s) for motion on hard ground. However, empirical adjustment of these control parameters away from the hard ground settings restores good performance, yielding top speeds of 30 cm/s. Robot speed depends sensitively on the packing fraction phi and the limb frequency omega, and a dramatic transition from rotary walking to slow swimming occurs when phi becomes small enough and/or omega large enough. We propose a kinematic model of the rotary walking mode based on generic features of penetration and slip of a curved limb in granular media. The model captures the dependence of robot speed on limb frequency and the transition between walking and swimming modes but highlights the need for a deeper understanding of the physics of granular media.
Collapse
|
30
|
Varas G, Vidal V, Géminard JC. Dynamics of crater formations in immersed granular materials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:021301. [PMID: 19391733 DOI: 10.1103/physreve.79.021301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Indexed: 05/27/2023]
Abstract
We report the formation of a crater at the free surface of an immersed granular bed, locally crossed by an ascending gas flow. In two dimensions, the crater consists of two piles which develop around the location of the gas emission. We observe that the typical size of the crater increases logarithmically with time, independently of the gas emission dynamics. We describe the related granular flows and give an account of the influence of the experimental parameters, especially of the grain size and of the gas flow.
Collapse
Affiliation(s)
- Germán Varas
- Laboratoire de Physique, Université de Lyon, Ecole Normale Supérieure, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex, France
| | | | | |
Collapse
|