1
|
Petek-Seoane NA, Rodriguez J, Derman AI, Royal SG, Lord SJ, Lawrence R, Pogliano J, Mullins RD. Polymer dynamics of Alp7A reveals how two critical concentrations govern assembly of dynamically unstable actin-like proteins. Mol Biol Cell 2024; 35:ar145. [PMID: 39320937 DOI: 10.1091/mbc.e23-11-0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Dynamically unstable polymers capture and move cellular cargos in bacteria and eukaryotes, but regulation of their assembly remains poorly understood. Here we describe polymerization of Alp7A, a bacterial actin-like protein (ALP) that distributes copies of plasmid pLS20 among daughter cells in Bacillus subtilis. Purified ATP-Alp7A forms dynamically unstable polymers with a high critical concentration for net assembly (ccN = 10.3 µM), but a much lower critical concentration for filament elongation (ccE = 0.6 µM). Rapid nucleation and stabilization of Alp7A polymers by the accessory factor, Alp7R, decrease ccN into the physiological range. Stable populations of Alp7A filaments appear under two conditions: (i) when Alp7R slows catastrophe rates or (ii) when Alp7A concentrations are high enough to promote filament bundling. These results reveal how dynamic instability maintains high steady-state concentrations of monomeric Alp7A, and how accessory factors regulate Alp7A assembly by modulating ccN independently of ccE.
Collapse
Affiliation(s)
| | - Johnny Rodriguez
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco 94158, CA
| | - Alan I Derman
- Department of Molecular Biology, UCSD, San Diego 92037, CA
| | | | - Samuel J Lord
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco 94158, CA
| | - Rosalie Lawrence
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco 94158, CA
| | - Joe Pogliano
- Department of Molecular Biology, UCSD, San Diego 92037, CA
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco 94158, CA
| |
Collapse
|
2
|
Nelson AC, Rolls MM, Ciocanel MV, McKinley SA. Minimal Mechanisms of Microtubule Length Regulation in Living Cells. Bull Math Biol 2024; 86:58. [PMID: 38627264 PMCID: PMC11413797 DOI: 10.1007/s11538-024-01279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
The microtubule cytoskeleton is responsible for sustained, long-range intracellular transport of mRNAs, proteins, and organelles in neurons. Neuronal microtubules must be stable enough to ensure reliable transport, but they also undergo dynamic instability, as their plus and minus ends continuously switch between growth and shrinking. This process allows for continuous rebuilding of the cytoskeleton and for flexibility in injury settings. Motivated by in vivo experimental data on microtubule behavior in Drosophila neurons, we propose a mathematical model of dendritic microtubule dynamics, with a focus on understanding microtubule length, velocity, and state-duration distributions. We find that limitations on microtubule growth phases are needed for realistic dynamics, but the type of limiting mechanism leads to qualitatively different responses to plausible experimental perturbations. We therefore propose and investigate two minimally-complex length-limiting factors: limitation due to resource (tubulin) constraints and limitation due to catastrophe of large-length microtubules. We combine simulations of a detailed stochastic model with steady-state analysis of a mean-field ordinary differential equations model to map out qualitatively distinct parameter regimes. This provides a basis for predicting changes in microtubule dynamics, tubulin allocation, and the turnover rate of tubulin within microtubules in different experimental environments.
Collapse
Affiliation(s)
- Anna C Nelson
- Department of Mathematics, Duke University, Durham, NC, 27710, USA.
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA, 16801, USA
| | - Maria-Veronica Ciocanel
- Department of Mathematics, Duke University, Durham, NC, 27710, USA
- Department of Biology, Duke University, Durham, NC, 27710, USA
| | - Scott A McKinley
- Department of Mathematics, Tulane University, New Orleans, LA, 70118, USA
| |
Collapse
|
3
|
Mullins RD. On the critical concentration for net assembly of dynamically unstable polymers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589322. [PMID: 38645192 PMCID: PMC11030398 DOI: 10.1101/2024.04.12.589322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cytoskeletal and cytomotive filaments are protein polymers that move molecular cargo and organize cellular contents in all domains of life. A key parameter describing the self-assembly of many of these polymers -including actin filaments and microtubules- is the minimum concentration required for polymer formation. This 'critical concentration for net assembly' (cc N ) is easy to calculate for eukaryotic actins but more difficult for dynamically unstable filaments such as microtubules and some bacterial polymers. To better understand how cells (especially bacteria) regulate assembly of dynamically unstable polymers I investigate the microscopic parameters that influence their critical concentrations. Assuming simple models for spontaneous nucleation and catastrophe I derive expressions for the monomer-polymer balance. In the absence of concentration-dependent rescue, fixed catastrophe rates do not produce clear critical concentrations. In contrast, simple ATP-/GTP-cap models with concentration-dependent catastrophe rates, generate phenomenological critical concentrations that increase linearly with the rate of nucleotide hydrolysis and decrease logarithmically with the rate of spontaneous nucleation.
Collapse
Affiliation(s)
- R Dyche Mullins
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco
| |
Collapse
|
4
|
Dieterle PB, Zheng J, Garner E, Amir A. Universal catastrophe time distributions of dynamically unstable polymers. Phys Rev E 2022; 105:064503. [PMID: 35854610 DOI: 10.1103/physreve.105.064503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 11/07/2022]
Abstract
Dynamic instability-the growth, catastrophe, and shrinkage of quasi-one-dimensional filaments-has been observed in multiple biopolymers. Scientists have long understood the catastrophic cessation of growth and subsequent depolymerization as arising from the interplay of hydrolysis and polymerization at the tip of the polymer. Here we show that for a broad class of catastrophe models, the expected catastrophe time distribution is exponential. We show that the distribution shape is insensitive to noise, but that depletion of monomers from a finite pool can dramatically change the distribution shape by reducing the polymerization rate. We derive a form for this finite-pool catastrophe time distribution and show that finite-pool effects can be important even when the depletion of monomers does not greatly alter the polymerization rate.
Collapse
Affiliation(s)
- Paul B Dieterle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jenny Zheng
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
5
|
Nganfo W, Kenfack-Sadem C, Fotué A, Ekosso M, Wopunghwo S, Fai L. Dynamics of exciton polaron in microtubule. Heliyon 2022; 8:e08897. [PMID: 35265761 PMCID: PMC8899671 DOI: 10.1016/j.heliyon.2022.e08897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, we study the dynamical properties of the exciton-polaron in the microtubule. The study was carried out using a unitary transformation and an approximate diagonalization technique. Analytically, the modeling of exciton-polaron dynamics in microtubules is presented. From this model, the ground state energy, mobility, and entropy of the exciton-polaron are derived as a function of microtubule's parameters. Numerical results show that, depending on the three vibrational modes (protofilament, helix, antihelix) in MTs, exciton-polaron energy is anisotropic and is more present on the protofilament than the helix and absent on the antihelix. Taking into account the variation of the protofilament vibrations by fixing the helix vibrations, exciton-polaron moves between the 1st and 2nd protofilaments. It is seen that the variation of the two vibrations induces mobility of the quasiparticle between the 1st and 15th protofilament. This result points out the importance of helix vibrations on the dynamics of quasiparticles. It is observed that the mobility of the exciton polaron and the entropy of the system are strongly influenced by the vibrations through the protofilament and helix. The effects of the one through the antihelix is negligible. The entropy of the system is similar to that of mobility. Confirming that the quasiparticles move in the protofilament faster than in the helix.
Collapse
Affiliation(s)
- W.A. Nganfo
- Condensed Matter and Nanomaterials, Faculty of Science, Department of Physics, University of Dschang, Po Box 67, Cameroon
| | - C. Kenfack-Sadem
- Condensed Matter and Nanomaterials, Faculty of Science, Department of Physics, University of Dschang, Po Box 67, Cameroon
| | - A.J. Fotué
- Condensed Matter and Nanomaterials, Faculty of Science, Department of Physics, University of Dschang, Po Box 67, Cameroon
| | - M.C. Ekosso
- Condensed Matter and Nanomaterials, Faculty of Science, Department of Physics, University of Dschang, Po Box 67, Cameroon
| | - S.N. Wopunghwo
- Condensed Matter and Nanomaterials, Faculty of Science, Department of Physics, University of Dschang, Po Box 67, Cameroon
| | - L.C. Fai
- Condensed Matter and Nanomaterials, Faculty of Science, Department of Physics, University of Dschang, Po Box 67, Cameroon
| |
Collapse
|
6
|
Swain A, Anil Kumar AV. A stochastic model for dynamics of FtsZ filaments and the formation of Z -ring. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:43. [PMID: 32617695 DOI: 10.1140/epje/i2020-11967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding the mechanisms responsible for the formation and growth of FtsZ polymers and their subsequent formation of the Z -ring is important for gaining insight into the cell division in prokaryotic cells. In this work, we present a minimal stochastic model that qualitatively reproduces in vitro observations of polymerization, formation of dynamic contractile ring that is stable for a long time and depolymerization shown by FtsZ polymer filaments. In this stochastic model, we explore different mechanisms for ring breaking and hydrolysis. In addition to hydrolysis, which is known to regulate the dynamics of other tubulin polymers like microtubules, we find that the presence of the ring allows for an additional mechanism for regulating the dynamics of FtsZ polymers. Ring breaking dynamics in the presence of hydrolysis naturally induce rescue and catastrophe events in this model irrespective of the mechanism of hydrolysis.
Collapse
Affiliation(s)
- Arabind Swain
- School of Physical Sciences, National Institute of Science Education and Research, 752050, Jatni, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, 400094, Mumbai, India
| | - A V Anil Kumar
- School of Physical Sciences, National Institute of Science Education and Research, 752050, Jatni, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, 400094, Mumbai, India
| |
Collapse
|
7
|
Michaels TC, Feng S, Liang H, Mahadevan L. Mechanics and kinetics of dynamic instability. eLife 2020; 9:54077. [PMID: 32392128 PMCID: PMC7213977 DOI: 10.7554/elife.54077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/04/2020] [Indexed: 11/13/2022] Open
Abstract
During dynamic instability, self-assembling microtubules (MTs) stochastically alternate between phases of growth and shrinkage. This process is driven by the presence of two distinct states of MT subunits, GTP- and GDP-bound tubulin dimers, that have different structural properties. Here, we use a combination of analysis and computer simulations to study the mechanical and kinetic regulation of dynamic instability in three-dimensional (3D) self-assembling MTs. Our model quantifies how the 3D structure and kinetics of the distinct states of tubulin dimers determine the mechanical stability of MTs. We further show that dynamic instability is influenced by the presence of quenched disorder in the state of the tubulin subunit as reflected in the fraction of non-hydrolysed tubulin. Our results connect the 3D geometry, kinetics and statistical mechanics of these tubular assemblies within a single framework, and may be applicable to other self-assembled systems where these same processes are at play.
Collapse
Affiliation(s)
- Thomas Ct Michaels
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
| | - Shuo Feng
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, China.,IAT Chungu Joint Laboratory for Additive Manufacturing, Anhui Chungu 3D Institute of Intelligent Equipment and Industrial Technology, Wuhu, China
| | - Haiyi Liang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, China.,IAT Chungu Joint Laboratory for Additive Manufacturing, Anhui Chungu 3D Institute of Intelligent Equipment and Industrial Technology, Wuhu, China
| | - L Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States.,Department of Physics, Harvard University, Cambridge, United States.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| |
Collapse
|
8
|
Spatio-temporal correlations between catastrophe events in a microtubule bundle: a computational study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:215-222. [PMID: 32157375 DOI: 10.1007/s00249-020-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
We explore correlations between dynamics of different microtubules in a bundle, via numerical simulations, using a one-dimensional stochastic model of a microtubule. The guanosine triphosphate (GTP)-bound tubulins undergo diffusion-limited binding to the tip. Random hydrolysis events take place along the microtubule and converts the bound GTP in tubulin to guanosine diphosphate (GDP). The microtubule starts depolymerising when the monomer at the tip becomes GDP-bound; in this case, detachment of GDP-tubulin ensues and continues until either GTP-bound tubulin is exposed or complete depolymerisation is achieved. In the latter case, the microtubule is defined to have undergone a "catastrophe". Our results show that, in general, the dynamics of growth and catastrophe in different microtubules are coupled to each other; the closer the microtubules are, the stronger the coupling. In particular, all microtubules grow slower, on average, when brought closer together. The reduction in growth velocity also leads to more frequent catastrophes. More dramatically, catastrophe events in the different microtubules forming a bundle are found to be correlated; a catastrophe event in one microtubule is more likely to be followed by a similar event in the same microtubule. This propensity of bunching disappears when the microtubules move farther apart.
Collapse
|
9
|
Interplay between Convective and Viscoelastic Forces Controls the Morphology of In Vitro Paclitaxel-Stabilized Microtubules. CRYSTALS 2020. [DOI: 10.3390/cryst10010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Microtubules (MTs) are self-assembling, high-aspect-ratio tubular nanostructures formed from the polymerization of tubulin protein. MTs are capable of globally assembling into optically birefringent morphologies, but there is disagreement on the mechanisms driving this behavior. We investigated the temporal evolution of paclitaxel (PTX)-stabilized MT solutions under a range of in vitro conditions. Significant morphological differences were observed in the polymerized PTX-MT solutions as a consequence of varying the orientation of the reaction vessel (vertical vs. horizontal), the type of heating source (hot plate vs. incubator), the incubation time, and the concentration of PTX (high vs. low). The most robust birefringent patterns were found only in vertically oriented cuvettes that were heated asymmetrically on a hot plate, suggesting dependence upon a convective flow, which we confirmed with a combination of optical and thermal imaging. Higher concentrations of PTX led to denser PTX-MT domain formation and brighter birefringence, due to more complete polymerization. Combining our experimental observations, we conclude that birefringent patterns arise principally through a combination of convective and viscoelastic forces, and we identify the sequence of dynamical stages through which they evolve.
Collapse
|
10
|
Ghanti D, Patra S, Chowdhury D. Molecular force spectroscopy of kinetochore-microtubule attachment in silico: Mechanical signatures of an unusual catch bond and collective effects. Phys Rev E 2018; 97:052414. [PMID: 29906871 DOI: 10.1103/physreve.97.052414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Indexed: 06/08/2023]
Abstract
Measurement of the lifetime of attachments formed by a single microtubule (MT) with a single kinetochore (kt) in vitro under force-clamp conditions had earlier revealed a catch-bond-like behavior. In the past, the physical origin of this apparently counterintuitive phenomenon was traced to the nature of the force dependence of the (de)polymerization kinetics of the MTs. Here, first the same model MT-kt attachment is subjected to external tension that increases linearly with time until rupture occurs. In our force-ramp experiments in silico, the model displays the well known "mechanical signatures" of a catch bond probed by molecular force spectroscopy. Exploiting this evidence, we have further strengthened the analogy between MT-kt attachments and common ligand-receptor bonds in spite of the crucial differences in their underlying physical mechanisms. We then extend the formalism to model the stochastic kinetics of an attachment formed by a bundle of multiple parallel microtubules with a single kt considering the effect of rebinding under force-clamp and force-ramp conditions. From numerical studies of the model we predict the trends of variation of the mean lifetime and mean rupture force with the increasing number of MTs in the bundle. Both the mean lifetime and the mean rupture force display nontrivial nonlinear dependence on the maximum number of MTs that can attach simultaneously to the same kt.
Collapse
Affiliation(s)
- Dipanwita Ghanti
- Department of Physics, Indian Institute of Technology Kanpur, 208016, India
| | | | | |
Collapse
|
11
|
Aparna JS, Padinhateeri R, Das D. Signatures of a macroscopic switching transition for a dynamic microtubule. Sci Rep 2017; 7:45747. [PMID: 28374844 PMCID: PMC5379563 DOI: 10.1038/srep45747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/02/2017] [Indexed: 11/17/2022] Open
Abstract
Characterising complex kinetics of non-equilibrium self-assembly of bio-filaments is of general interest. Dynamic instability in microtubules, consisting of successive catastrophes and rescues, is observed to occur as a result of the non-equilibrium conversion of GTP-tubulin to GDP-tubulin. We study this phenomenon using a model for microtubule kinetics with GTP/GDP state-dependent polymerisation, depolymerisation and hydrolysis of subunits. Our results reveal a sharp switch-like transition in the mean velocity of the filaments, from a growth phase to a shrinkage phase, with an associated co-existence of the two phases. This transition is reminiscent of the discontinuous phase transition across the liquid-gas boundary. We probe the extent of discontinuity in the transition quantitatively using characteristic signatures such as bimodality in velocity distribution, variance and Binder cumulant, and also hysteresis behaviour of the system. We further investigate ageing behaviour in catastrophes of the filament, and find that the multi-step nature of catastrophes is intensified in the vicinity of the switching transition. This assumes importance in the context of Microtubule Associated Proteins which have the potential of altering kinetic parameter values.
Collapse
Affiliation(s)
- J S Aparna
- Centre for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
12
|
Bameta T, Das D, Das D, Padinhateeri R, Inamdar MM. Sufficient conditions for the additivity of stall forces generated by multiple filaments or motors. Phys Rev E 2017; 95:022406. [PMID: 28297971 DOI: 10.1103/physreve.95.022406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Molecular motors and cytoskeletal filaments work collectively most of the time under opposing forces. This opposing force may be due to cargo carried by motors or resistance coming from the cell membrane pressing against the cytoskeletal filaments. Some recent studies have shown that the collective maximum force (stall force) generated by multiple cytoskeletal filaments or molecular motors may not always be just a simple sum of the stall forces of the individual filaments or motors. To understand this excess or deficit in the collective force, we study a broad class of models of both cytoskeletal filaments and molecular motors. We argue that the stall force generated by a group of filaments or motors is additive, that is, the stall force of N number of filaments (motors) is N times the stall force of one filament (motor), when the system is reversible at stall. Conversely, we show that this additive property typically does not hold true when the system is irreversible at stall. We thus present a novel and unified understanding of the existing models exhibiting such non-addivity, and generalise our arguments by developing new models that demonstrate this phenomena. We also propose a quantity similar to thermodynamic efficiency to easily predict this deviation from stall-force additivity for filament and motor collectives.
Collapse
Affiliation(s)
- Tripti Bameta
- UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Vidhyanagari Campus, Mumbai-400098, India
| | - Dipjyoti Das
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai-400 076, India
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai-400 076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai-400 076, India
| |
Collapse
|
13
|
Reithmann E, Reese L, Frey E. Nonequilibrium Diffusion and Capture Mechanism Ensures Tip Localization of Regulating Proteins on Dynamic Filaments. PHYSICAL REVIEW LETTERS 2016; 117:078102. [PMID: 27564001 DOI: 10.1103/physrevlett.117.078102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 06/06/2023]
Abstract
Diffusive motion of regulatory enzymes on biopolymers with eventual capture at a reaction site is a common feature in cell biology. Using a lattice gas model we study the impact of diffusion and capture for a microtubule polymerase and a depolymerase. Our results show that the capture mechanism localizes the proteins and creates large-scale spatial correlations. We develop an analytic approximation that globally accounts for relevant correlations and yields results that are in excellent agreement with experimental data. Our results show that diffusion and capture operates most efficiently at cellular enzyme concentrations which points to in vivo relevance.
Collapse
Affiliation(s)
- Emanuel Reithmann
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| | - Louis Reese
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| |
Collapse
|
14
|
Abstract
We study a continuous-time stochastic process on strings made of two types of particle, whose dynamics mimic the behaviour of microtubules in a living cell; namely, the strings evolve via a competition between (local) growth/shrinking as well as (global) hydrolysis processes. We give a complete characterization of the phase diagram of the model, and derive several criteria of the transient and recurrent regimes for the underlying stochastic process.
Collapse
|
15
|
Hryniv O, Menshikov M. Long-Time Behaviour in a Model of Microtubule Growth. ADV APPL PROBAB 2016. [DOI: 10.1239/aap/1269611153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We study a continuous-time stochastic process on strings made of two types of particle, whose dynamics mimic the behaviour of microtubules in a living cell; namely, the strings evolve via a competition between (local) growth/shrinking as well as (global) hydrolysis processes. We give a complete characterization of the phase diagram of the model, and derive several criteria of the transient and recurrent regimes for the underlying stochastic process.
Collapse
|
16
|
Cytoskeletal Symmetry Breaking and Chirality: From Reconstituted Systems to Animal Development. Symmetry (Basel) 2015. [DOI: 10.3390/sym7042062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
Niedermayer T, Lipowsky R. Association-dissociation process with aging subunits: Recursive solution. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052137. [PMID: 26651676 DOI: 10.1103/physreve.92.052137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 06/05/2023]
Abstract
The coupling of stochastic growth and shrinkage of one-dimensional structures to random aging of the constituting subunits defines the simple association-dissociation-aging process which captures the essential features of the nonequilibrium assembly of cytoskeletal filaments. Because of correlations, previously employed mean-field methods fail to correctly describe filament growth. We study an alternative formulation of the full master equation of the stochastic process. An ansatz for the steady-state solution leads to a recursion relation which allows for the calculation of all emergent quantities with increasing accuracy and in excellent agreement with stochastic simulations.
Collapse
Affiliation(s)
- Thomas Niedermayer
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
18
|
Jemseena V, Gopalakrishnan M. Effects of aging in catastrophe on the steady state and dynamics of a microtubule population. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052704. [PMID: 26066196 DOI: 10.1103/physreve.91.052704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 06/04/2023]
Abstract
Several independent observations have suggested that the catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent in vitro observations by Gardner et al. [M. K. Gardner et al., Cell 147, 1092 (2011)] showed that microtubule catastrophe takes place via multiple steps and the frequency increases with the age of the filament. Here we investigate, via numerical simulations and mathematical calculations, some of the consequences of the age dependence of catastrophe on the dynamics of microtubules as a function of the aging rate, for two different models of aging: exponential growth, but saturating asymptotically, and purely linear growth. The boundary demarcating the steady-state and non-steady-state regimes in the dynamics is derived analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show that aging leads to nonexponential length distributions in steady state. More importantly, oscillations ensue in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that the age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a microtubule population, distinct from hitherto identified ones.
Collapse
Affiliation(s)
- V Jemseena
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Manoj Gopalakrishnan
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
19
|
Das D, Das D, Padinhateeri R. Force-induced dynamical properties of multiple cytoskeletal filaments are distinct from that of single filaments. PLoS One 2014; 9:e114014. [PMID: 25531397 PMCID: PMC4273989 DOI: 10.1371/journal.pone.0114014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/02/2014] [Indexed: 12/12/2022] Open
Abstract
How cytoskeletal filaments collectively undergo growth and shrinkage is an intriguing question. Collective properties of multiple bio-filaments (actin or microtubules) undergoing hydrolysis have not been studied extensively earlier within simple theoretical frameworks. In this paper, we study the collective dynamical properties of multiple filaments under force, and demonstrate the distinct properties of a multi-filament system in comparison to a single filament. Comparing stochastic simulation results with recent experimental data, we show that multi-filament collective catastrophes are slower than catastrophes of single filaments. Our study also shows further distinctions as follows: (i) force-dependence of the cap-size distribution of multiple filaments are quantitatively different from that of single filaments, (ii) the diffusion constant associated with the system length fluctuations is distinct for multiple filaments, and (iii) switching dynamics of multiple filaments between capped and uncapped states and the fluctuations therein are also distinct. We build a unified picture by establishing interconnections among all these collective phenomena. Additionally, we show that the collapse times during catastrophes can be sharp indicators of collective stall forces exceeding the additive contributions of single filaments.
Collapse
Affiliation(s)
- Dipjyoti Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
- * E-mail: (DD); (DD); (RP)
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
- * E-mail: (DD); (DD); (RP)
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- * E-mail: (DD); (DD); (RP)
| |
Collapse
|
20
|
Li X, Kolomeisky AB. Theoretical analysis of microtubule dynamics at all times. J Phys Chem B 2014; 118:13777-84. [PMID: 25390471 DOI: 10.1021/jp507206f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microtubules are biopolymers consisting of tubulin dimer subunits. As a major component of cytoskeleton they are essential for supporting most important cellular processes such as cell division, signaling, intracellular transport and cell locomotion. The hydrolysis of guanosine triphosphate (GTP) molecules attached to each tubulin subunit supports the nonequilibrium nature of microtubule dynamics. One of the most spectacular properties of microtubules is their dynamic instability when their growth from continuous attachment of tubulin dimers stochastically alternates with periods of shrinking. Despite the critical importance of this process to all cellular activities, its mechanism remains not fully understood. We investigated theoretically microtubule dynamics at all times by analyzing explicitly temporal evolution of various length clusters of unhydrolyzed subunits. It is found that the dynamic behavior of microtubules depends strongly on initial conditions. Our theoretical findings provide a microscopic explanation for recent experiments which found that the frequency of catastrophes increases with the lifetime of microtubules. It is argued that most growing microtubule configurations cannot transit in one step into a shrinking state, leading to a complex overall temporal behavior. Theoretical calculations combined with Monte Carlo computer simulations are also directly compared with experimental observations, and good agreement is found.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | | |
Collapse
|
21
|
Li C, Li J, Goodson HV, Alber MS. Microtubule dynamic instability: the role of cracks between protofilaments. SOFT MATTER 2014; 10:2069-2080. [PMID: 24652487 DOI: 10.1039/c3sm52892h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microtubules (MTs) are cytoplasmic protein polymers that are essential for fundamental cellular processes including the maintenance of cell shape, organelle transport and formation of the mitotic spindle. Microtubule dynamic instability is critical for these processes, but it remains poorly understood, in part because the relationship between the structure of the MT tip and the growth/depolymerization transitions is enigmatic. In previous work, we used computational models of dynamic instability to provide evidence that cracks (laterally unbonded regions) between protofilaments play a key role in the regulation of dynamic instability. Here we use computational models to investigate the connection between cracks and dynamic instability in more detail. Our work indicates that while cracks contribute to dynamic instability in a fundamental way, it is not the depth of the cracks per se that governs MT dynamic instability. Instead, what matters more is whether the cracks terminate in GTP-rich or GDP-rich regions of the MT. Based on these observations, we suggest that a functional "GTP cap" (i.e., one capable of promoting MT growth) is one where the cracks terminate in pairs of GTP-bound subunits, and that the likelihood of catastrophe rises significantly with the fraction of crack-terminating subunits that contain GDP. In addition to helping clarify the mechanism of dynamic instability, this idea could also explain how MT stabilizers work: proteins that introduce lateral cross-links between protofilaments would produce islands of GDP-bound tubulin that mimic GTP-rich regions in having strong lateral bonds, thus reducing crack propagation, suppressing catastrophe and promoting rescue.
Collapse
Affiliation(s)
- Chunlei Li
- Department of Applied & Computational Mathematics and Statistics, University of Notre Dame, IN, USA.
| | | | | | | |
Collapse
|
22
|
Li X, Kolomeisky AB. A New Theoretical Approach to Analyze Complex Processes in Cytoskeleton Proteins. J Phys Chem B 2014; 118:2966-72. [DOI: 10.1021/jp500268q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xin Li
- Department of Chemistry and
Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Anatoly B. Kolomeisky
- Department of Chemistry and
Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
23
|
Zhao Q, Li J, Tang S, Zhang Y, Chen L, Choi MMF, Guo Y, Xiao D. Magnetic-field-induced growth of silver dendrite-crystalline Liesegang rings. CrystEngComm 2014. [DOI: 10.1039/c4ce00492b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An external magnetic field can control the chirality of Liesegang rings and induce a change in the silver crystal structure.
Collapse
Affiliation(s)
- Qian Zhao
- College of Chemistry
- Sichuan University
- Chengdu, China
| | - Jing Li
- College of Chemistry
- Sichuan University
- Chengdu, China
| | - Shiyi Tang
- Yangtze Center of Mathematics
- Sichuan University
- China
| | - Yongzhi Zhang
- College of Chemistry
- Sichuan University
- Chengdu, China
| | - Li Chen
- College of Chemistry
- Sichuan University
- Chengdu, China
| | | | - Yong Guo
- College of Chemistry
- Sichuan University
- Chengdu, China
| | - Dan Xiao
- College of Chemistry
- Sichuan University
- Chengdu, China
| |
Collapse
|
24
|
Jemseena V, Gopalakrishnan M. Microtubule catastrophe from protofilament dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032717. [PMID: 24125304 DOI: 10.1103/physreve.88.032717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/29/2013] [Indexed: 06/02/2023]
Abstract
The disappearance of the guanosine triphosphate- (GTP) tubulin cap is widely believed to be the forerunner event for the growth-shrinkage transition ("catastrophe") in microtubule filaments in eukaryotic cells. We study a discrete version of a stochastic model of the GTP cap dynamics, originally proposed by Flyvbjerg, Holy, and Leibler [Phys. Rev. Lett. 73, 2372 (1994)]. Our model includes both spontaneous and vectorial hydrolysis, as well as dissociation of a nonhydrolyzed dimer from the filament after incorporation. In the first part of the paper, we apply this model to a single protofilament of a microtubule. A catastrophe transition is defined for each protofilament, similarly to the earlier one-dimensional models, the frequency of occurrence of which is then calculated under various conditions but without explicit assumption of steady-state conditions. Using a perturbative approach, we show that the leading asymptotic behavior of the protofilament catastrophe in the limit of large growth velocities is remarkably similar across different models. In the second part of the paper, we extend our analysis to the entire filament by making a conjecture that a minimum number of such transitions are required to occur for the onset of microtubule catastrophe. The frequency of microtubule catastrophe is then determined using numerical simulations and compared with analytical and semianalytical estimates made under steady-state and quasi-steady-state assumptions, respectively, for the protofilament dynamics. A few relevant experimental results are analyzed in detail and compared with predictions from the model. Our results indicate that loss of GTP cap in two to three protofilaments is necessary to trigger catastrophe in a microtubule.
Collapse
Affiliation(s)
- V Jemseena
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | | |
Collapse
|
25
|
Li X, Kolomeisky AB. Theoretical analysis of microtubules dynamics using a physical-chemical description of hydrolysis. J Phys Chem B 2013; 117:9217-23. [PMID: 23844777 DOI: 10.1021/jp404794f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microtubules are cytoskeleton multifilament proteins that support many fundamental biological processes such as cell division, cellular transport, and motility. They can be viewed as dynamic polymers that function in nonequilibrium conditions stimulated by hydrolysis of GTP (guanosine triphosphate) molecules bound to their monomers. We present a theoretical description of microtubule dynamics based on discrete-state stochastic models that explicitly takes into account all relevant biochemical transitions. In contrast to previous theoretical analysis, a more realistic physical-chemical description of GTP hydrolysis is presented, in which the hydrolysis rate at a given monomer depends on the chemical composition of the neighboring monomers. This dependence naturally leads to a cooperativity in the hydrolysis. It is found that this cooperativity significantly influences all dynamic properties of microtubules. It is suggested that the dynamic instability in cytoskeleton proteins might be observed only for weak cooperativity, while the strong cooperativity in hydrolysis suppresses the dynamic instability. The presented microscopic analysis is compared with existing phenomenological descriptions of hydrolysis processes. Our analytical calculations, supported by computer Monte Carlo simulations, are also compared with available experimental observations.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
26
|
Padinhateeri R, Kolomeisky AB, Lacoste D. Random hydrolysis controls the dynamic instability of microtubules. Biophys J 2012; 102:1274-83. [PMID: 22455910 DOI: 10.1016/j.bpj.2011.12.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 10/15/2011] [Accepted: 12/01/2011] [Indexed: 01/20/2023] Open
Abstract
Uncovering mechanisms that control the dynamics of microtubules is fundamental for our understanding of multiple cellular processes such as chromosome separation and cell motility. Building on previous theoretical work on the dynamic instability of microtubules, we propose here a stochastic model that includes all relevant biochemical processes that affect the dynamics of microtubule plus-end, namely, the binding of GTP-bound monomers, unbinding of GTP- and GDP-bound monomers, and hydrolysis of GTP monomers. The inclusion of dissociation processes, present in our approach but absent from many previous studies, is essential to guarantee the thermodynamic consistency of the model. Our theoretical method allows us to compute all dynamic properties of microtubules explicitly. Using experimentally determined rates, it is found that the cap size is ∼3.6 layers, an estimate that is compatible with several experimental observations. In the end, our model provides a comprehensive description of the dynamic instability of microtubules that includes not only the statistics of catastrophes but also the statistics of rescues.
Collapse
Affiliation(s)
- Ranjith Padinhateeri
- Department of Biosciences and Bioengineering and Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | |
Collapse
|
27
|
Swanson D, Wingreen NS. Active biopolymers confer fast reorganization kinetics. PHYSICAL REVIEW LETTERS 2011; 107:218103. [PMID: 22181930 DOI: 10.1103/physrevlett.107.218103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Indexed: 05/31/2023]
Abstract
Many cytoskeletal biopolymers are "active," consuming energy in large quantities. In this Letter, we identify a fundamental difference between active polymers and passive, equilibrium polymers: for equal mean lengths, active polymers can reorganize faster than equilibrium polymers. We show that equilibrium polymers are intrinsically limited to linear scaling between mean lifetime (or mean first-passage time, or MFPT) and mean length, MFPT∼<L>, by analogy to 1D Potts models. By contrast, we present a simple active-polymer model that improves upon this scaling, such that MFPT∼<L>(1/2). Since, to be biologically useful, structural biopolymers must typically be many monomers long yet respond dynamically to the needs of the cell, the difference in reorganization kinetics may help to justify the active polymers' greater energy cost.
Collapse
Affiliation(s)
- Douglas Swanson
- Department of Physics, Princeton University, New Jersey 08544, USA.
| | | |
Collapse
|
28
|
Zapperi S, Mahadevan L. Dynamic instability of a growing adsorbed polymorphic filament. Biophys J 2011; 101:267-75. [PMID: 21767478 DOI: 10.1016/j.bpj.2011.04.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022] Open
Abstract
The intermittent transition between slow growth and rapid shrinkage in polymeric assemblies is termed "dynamic instability", a feature observed in a variety of biochemically distinct assemblies including microtubules, actin, and their bacterial analogs. The existence of this labile phase of a polymer has many functional consequences in cytoskeletal dynamics, and its repeated appearance suggests that it is relatively easy to evolve. Here, we consider the minimal ingredients for the existence of dynamic instability by considering a single polymorphic filament that grows by binding to a substrate, undergoes a conformation change, and may unbind as a consequence of the residual strains induced by this change. We identify two parameters that control the phase space of possibilities for the filament: a structural mechanical parameter that characterizes the ratio of the bond strengths along the filament to those with the substrate (or equivalently the ratio of longitudinal to lateral interactions in an assembly), and a kinetic parameter that characterizes the ratio of timescales for growth and conformation change. In the deterministic limit, these parameters serve to demarcate a region of uninterrupted growth from that of collapse. However, in the presence of disorder in either the structural or the kinetic parameter the growth and collapse phases can coexist where the filament can grow slowly, shrink rapidly, and transition between these phases, thus exhibiting dynamic instability. We exhibit the window for the existence of dynamic instability in a phase diagram that allows us to quantify the evolvability of this labile phase.
Collapse
Affiliation(s)
- Stefano Zapperi
- Consiglio Nazionale delle Ricerche-Istituto per l'Energetica e le Interfasi, Milan, Italy
| | | |
Collapse
|
29
|
Hinow P, Rezania V, Lopus M, Jordan MA, Tuszyński JA. Modeling the effects of drug binding on the dynamic instability of microtubules. Phys Biol 2011; 8:056004. [PMID: 21836336 DOI: 10.1088/1478-3975/8/5/056004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We propose a stochastic model that accounts for the growth, catastrophe and rescue processes of steady-state microtubules assembled from MAP-free tubulin in the possible presence of a microtubule-associated drug. As an example of the latter, we both experimentally and theoretically study the perturbation of microtubule dynamic instability by S-methyl-D-DM1, a synthetic derivative of the microtubule-targeted agent maytansine and a potential anticancer agent. Our model predicts that among the drugs that act locally at the microtubule tip, primary inhibition of the loss of GDP tubulin results in stronger damping of microtubule dynamics than inhibition of GTP tubulin addition. On the other hand, drugs whose action occurs in the interior of the microtubule need to be present in much higher concentrations to have visible effects.
Collapse
Affiliation(s)
- Peter Hinow
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201, USA.
| | | | | | | | | |
Collapse
|
30
|
Hagan MF, Chakraborty B. Prolonging assembly through dissociation: a self-assembly paradigm in microtubules. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:051904. [PMID: 21732705 DOI: 10.1103/physreve.83.051904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 03/29/2011] [Indexed: 05/31/2023]
Abstract
We study a one-dimensional model of microtubule assembly and disassembly in which GTP bound to tubulins within the microtubule undergoes stochastic hydrolysis. In contrast to models that consider only a cap of GTP-bound tubulin, stochastic hydrolysis allows GTP-bound tubulin remnants to exist within the microtubule. We find that these buried GTP remnants enable an alternative mechanism of recovery from shrinkage and enhances fluctuations of filament lengths. Under conditions for which this alternative mechanism dominates, an increasing depolymerization rate leads to a decrease in dissociation rate and thus a net increase in assembly.
Collapse
|
31
|
Ebbinghaus M, Santen L. Theoretical modeling of aging effects in microtubule dynamics. Biophys J 2011; 100:832-8. [PMID: 21320426 DOI: 10.1016/j.bpj.2010.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 11/15/2010] [Accepted: 11/23/2010] [Indexed: 11/18/2022] Open
Abstract
The microtubule (MT) network, an important part of the cytoskeleton, is constantly remodeled by alternating phases of growth and shrinkage of individual filaments. Plus-end tracking proteins (+TIPs) interact with the MT and in many cases alter its dynamics. Although it is established that some +TIPs modify MT dynamics by increasing rescues, the plus-end tracking mechanism is still under debate. We present a model for MT dynamics in which a rescue factor is dynamically added to the filament during growth. As a consequence, the filament shows aging behavior that should be experimentally accessible and thus allow one to exclude some hypothesized models regarding the inclusion of rescue factors at the MT plus end. This result is not limited to +TIPs and can be extended to any kind of mechanism shifting the parameters of dynamic instability. Additionally, we show that the cell geometry has a strong influence on the quantitative results.
Collapse
Affiliation(s)
- Maximilian Ebbinghaus
- Laboratoire de Physique Théorique, Université Paris-Sud 11, Centre National de la Recherche Scientifique, Orsay, France
| | | |
Collapse
|
32
|
Margolin G, Goodson HV, Alber MS. Mean-field study of the role of lateral cracks in microtubule dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:041905. [PMID: 21599199 DOI: 10.1103/physreve.83.041905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 01/22/2011] [Indexed: 05/04/2023]
Abstract
A link between dimer-scale processes and microtubule (MT) dynamics at macroscale is studied by comparing simulations obtained using computational dimer-scale model with its mean-field approximation. The novelty of the mean-field model (MFM) is in its explicit representation of inter-protofilament cracks, as well as in the direct incorporation of the dimer-level kinetics. Due to inclusion of both longitudinal and lateral dimer interactions, the MFM is two dimensional, in contrast to previous theoretical models of MTs. It is the first analytical model that predicts and quantifies crucial features of MT dynamics such as (i) existence of a minimal soluble tubulin concentration needed for the polymerization (with concentration represented as a function of model parameters), (ii) existence of steady-state growth and shortening phases (given with their respective velocities), and (iii) existence of an unstable pause state near zero velocity. In addition, the size of the GTP cap of a growing MT is estimated. Theoretical predictions are shown to be in good agreement with the numerical simulations.
Collapse
Affiliation(s)
- Gennady Margolin
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
33
|
Ranjith P, Mallick K, Joanny JF, Lacoste D. Role of ATP-hydrolysis in the dynamics of a single actin filament. Biophys J 2010; 98:1418-27. [PMID: 20409460 DOI: 10.1016/j.bpj.2009.12.4306] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/09/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022] Open
Abstract
We study the stochastic dynamics of growth and shrinkage of single actin filaments taking into account insertion, removal, and ATP hydrolysis of subunits either according to the vectorial mechanism or to the random mechanism. In a previous work, we developed a model for a single actin or microtubule filament where hydrolysis occurred according to the vectorial mechanism: the filament could grow only from one end, and was in contact with a reservoir of monomers. Here we extend this approach in two ways--by including the dynamics of both ends and by comparing two possible mechanisms of ATP hydrolysis. Our emphasis is mainly on two possible limiting models for the mechanism of hydrolysis within a single filament, namely the vectorial or the random model. We propose a set of experiments to test the nature of the precise mechanism of hydrolysis within actin filaments.
Collapse
|
34
|
Hinow P, Rezania V, Tuszyński JA. Continuous model for microtubule dynamics with catastrophe, rescue, and nucleation processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:031904. [PMID: 19905143 DOI: 10.1103/physreve.80.031904] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 05/14/2009] [Indexed: 05/28/2023]
Abstract
Microtubules are a major component of the cytoskeleton distinguished by highly dynamic behavior both in vitro and in vivo referred to as dynamic instability. We propose a general mathematical model that accounts for the growth, catastrophe, rescue, and nucleation processes in the polymerization of microtubules from tubulin dimers. Our model is an extension of various mathematical models developed earlier formulated in order to capture and unify the various aspects of tubulin polymerization. While attempting to use a minimal number of adjustable parameters, the proposed model covers a broad range of behaviors and has predictive features discussed in the paper. We have analyzed the range of resultant dynamical behavior of the microtubules by changing each of the parameter values at a time and observing the emergence of various dynamical regimes that agree well with the previously reported experimental data and behavior.
Collapse
Affiliation(s)
- Peter Hinow
- Institute for Mathematics and its Applications, University of Minnesota, 114 Lind Hall, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
35
|
Nonequilibrium self-assembly of a filament coupled to ATP/GTP hydrolysis. Biophys J 2009; 96:2146-59. [PMID: 19289041 DOI: 10.1016/j.bpj.2008.12.3920] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/04/2008] [Accepted: 12/08/2008] [Indexed: 02/08/2023] Open
Abstract
We study the stochastic dynamics of growth and shrinkage of single actin filaments or microtubules taking into account insertion, removal, and ATP/GTP hydrolysis of subunits. The resulting phase diagram contains three different phases: two phases of unbounded growth: a rapidly growing phase and an intermediate phase, and one bounded growth phase. We analyze all these phases, with an emphasis on the bounded growth phase. We also discuss how hydrolysis affects force-velocity curves. The bounded growth phase shows features of dynamic instability, which we characterize in terms of the time needed for the ATP/GTP cap to disappear as well as the time needed for the filament to reach a length of zero (i.e., to collapse) for the first time. We obtain exact expressions for all these quantities, which we test using Monte Carlo simulations.
Collapse
|
36
|
Dima RI, Joshi H. Probing the origin of tubulin rigidity with molecular simulations. Proc Natl Acad Sci U S A 2008; 105:15743-8. [PMID: 18840679 PMCID: PMC2572946 DOI: 10.1073/pnas.0806113105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Indexed: 11/18/2022] Open
Abstract
Tubulin heterodimers are the building blocks of microtubules, a major component of the cytoskeleton, whose mechanical properties are fundamental for the life of the cell. We uncover the microscopic origins of the mechanical response in microtubules by probing features of the energy landscape of the tubulin monomers and tubulin heterodimer. To elucidate the structures of the unfolding pathways and reveal the multiple unfolding routes, we performed simulations of a self-organized polymer (SOP) model of tubulin. The SOP representation, which is a coarse-grained description of chains, allows us to perform force-induced simulations at loading rates and time scales that closely match those used in single-molecule experiments. We show that the forced unfolding of each monomer involves a bifurcation in the pathways to the stretched state. After the unfolding of the C-term domain, the unraveling continues either from the N-term domain or from the middle domain, depending on the monomer and the pathway. In contrast to the unfolding complexity of the monomers, the dimer unfolds according to only one route corresponding to the unraveling of the C-term domain and part of the middle domain of beta-tubulin. We find that this surprising behavior is due to the viscoelastic properties of the interface between the monomers. We map precise features of the complex energy landscape of tubulin by surveying the structures of the various metastable intermediates, which, in the dimer case, are characterized only by changes in the beta-tubulin monomer.
Collapse
Affiliation(s)
- Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA.
| | | |
Collapse
|