1
|
Cavallaro M, Wang Y, Hebenstreit D, Dutta R. Bayesian inference of polymerase dynamics over the exclusion process. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221469. [PMID: 37538742 PMCID: PMC10394410 DOI: 10.1098/rsos.221469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
Transcription is a complex phenomenon that permits the conversion of genetic information into phenotype by means of an enzyme called RNA polymerase, which erratically moves along and scans the DNA template. We perform Bayesian inference over a paradigmatic mechanistic model of non-equilibrium statistical physics, i.e. the asymmetric exclusion processes in the hydrodynamic limit, assuming a Gaussian process prior for the polymerase progression rate as a latent variable. Our framework allows us to infer the speed of polymerases during transcription given their spatial distribution, while avoiding the explicit inversion of the system's dynamics. The results, which show processing rates strongly varying with genomic position and minor role of traffic-like congestion, may have strong implications for the understanding of gene expression.
Collapse
Affiliation(s)
- Massimo Cavallaro
- Mathematics Institute, University of Warwick, Coventry, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
| | - Yuexuan Wang
- Institute of Applied Statistics, Johannes Kepler Universität, Linz, Austria
| | | | - Ritabrata Dutta
- Department of Statistics, University of Warwick, Coventry, UK
| |
Collapse
|
2
|
Combinations of slow-translating codon clusters can increase mRNA half-life in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2021; 118:2026362118. [PMID: 34911752 DOI: 10.1073/pnas.2026362118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
The presence of a single cluster of nonoptimal codons was found to decrease a transcript's half-life through the interaction of the ribosome-associated quality control machinery with stalled ribosomes in Saccharomyces cerevisiae The impact of multiple nonoptimal codon clusters on a transcript's half-life, however, is unknown. Using a kinetic model, we predict that inserting a second nonoptimal cluster near the 5' end can lead to synergistic effects that increase a messenger RNA's (mRNA's) half-life in S. cerevisiae Specifically, the 5' end cluster suppresses the formation of ribosome queues, reducing the interaction of ribosome-associated quality control factors with stalled ribosomes. We experimentally validate this prediction by introducing two nonoptimal clusters into three different genes and find that their mRNA half-life increases up to fourfold. The model also predicts that in the presence of two clusters, the cluster closest to the 5' end is the primary determinant of mRNA half-life. These results suggest the "translational ramp," in which nonoptimal codons are located near the start codon and increase translational efficiency, may have the additional biological benefit of allowing downstream slow-codon clusters to be present without decreasing mRNA half-life. These results indicate that codon usage bias plays a more nuanced role in controlling cellular protein levels than previously thought.
Collapse
|
3
|
Sharma AK. Translational autoregulation of RF2 protein in E. coli through programmed frameshifting. Phys Rev E 2021; 103:062412. [PMID: 34271674 DOI: 10.1103/physreve.103.062412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/04/2021] [Indexed: 11/07/2022]
Abstract
Various feedback mechanisms regulate the expression of different genes to ensure the required protein levels inside a cell. In this paper, we develop a kinetic model for one such mechanism that autoregulates RF2 protein synthesis in E. coli through programmed frameshifting. The model finds that the programmed frameshifting autoregulates RF2 protein synthesis by two independent mechanisms. First, it increases the rate of RF2 synthesis from each mRNA transcript at low RF2 concentration. Second, programmed frameshifting can dramatically increase the lifetime of RF2 transcripts when RF2 protein levels are lower than a threshold. This sharp increase in mRNA lifetime is caused by a first-order phase transition from a low to a high ribosome density on an RF2 transcript. The high ribosome density prevents the transcript's degradation by shielding it from nucleases, which increases its average lifetime and hence RF2 protein levels. Our study identifies this quality control mechanism that regulates the cellular protein levels by breaking the hierarchy of processes involved in gene expression.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Jammu 181221, India
| |
Collapse
|
4
|
EGGTART: A tool to visualize the dynamics of biophysical transport under the inhomogeneous l-TASEP. Biophys J 2021; 120:1309-1313. [PMID: 33582139 DOI: 10.1016/j.bpj.2021.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
The totally asymmetric simple exclusion process (TASEP), which describes the stochastic dynamics of interacting particles on a lattice, has been actively studied over the past several decades and applied to model important biological transport processes. Here, we present a software package, called EGGTART (Extensive GUI gives TASEP-realization in Real Time), which quantifies and visualizes the dynamics associated with a generalized version of the TASEP with an extended particle size and heterogeneous jump rates. This computational tool is based on analytic formulas obtained from deriving and solving the hydrodynamic limit of the process. It allows an immediate quantification of the particle density, flux, and phase diagram, as a function of a few key parameters associated with the system, which would be difficult to achieve via conventional stochastic simulations. Our software should therefore be of interest to biophysicists studying general transport processes and can in particular be used in the context of gene expression to model and quantify mRNA translation of different coding sequences.
Collapse
|
5
|
Szavits-Nossan J, Waclaw B. Current-density relation in the exclusion process with dynamic obstacles. Phys Rev E 2020; 102:042117. [PMID: 33212664 DOI: 10.1103/physreve.102.042117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
We investigate the totally asymmetric simple exclusion process (TASEP) in the presence of obstacles that dynamically bind and unbind from the lattice. The model is motivated by biological processes such as transcription in the presence of DNA-binding proteins. Similar models have been studied before using the mean-field approximation, but the exact relation between the particle current and density remains elusive. Here, we first show using extensive Monte Carlo simulations that the current-density relation in this model assumes a quasiparabolic form similar to that of the ordinary TASEP without obstacles. We then attempt to explain this relation using exact calculations in the limit of low and high density of particles. Our results suggest that the symmetric, quasiparabolic current-density relation arises through a nontrivial cancellation of higher-order terms, similarly as in the standard TASEP.
Collapse
Affiliation(s)
- J Szavits-Nossan
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - B Waclaw
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
6
|
Erdmann-Pham DD, Dao Duc K, Song YS. The Key Parameters that Govern Translation Efficiency. Cell Syst 2020; 10:183-192.e6. [PMID: 31954660 DOI: 10.1016/j.cels.2019.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/29/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022]
Abstract
Translation of mRNA into protein is a fundamental yet complex biological process with multiple factors that can potentially affect its efficiency. Here, we study a stochastic model describing the traffic flow of ribosomes along the mRNA and identify the key parameters that govern the overall rate of protein synthesis, sensitivity to initiation rate changes, and efficiency of ribosome usage. By analyzing a continuum limit of the model, we obtain closed-form expressions for stationary currents and ribosomal densities, which agree well with Monte Carlo simulations. Furthermore, we completely characterize the phase transitions in the system, and by applying our theoretical results, we formulate design principles that detail how to tune the key parameters we identified to optimize translation efficiency. Using ribosome profiling data from S. cerevisiae, we show that its translation system is generally consistent with these principles. Our theoretical results have implications for evolutionary biology, as well as for synthetic biology.
Collapse
Affiliation(s)
- Dan D Erdmann-Pham
- Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Khanh Dao Duc
- Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Abstract
Heterologously expressed genes require adaptation to the host organism to ensure adequate levels of protein synthesis, which is typically approached by replacing codons by the target organism’s preferred codons. In view of frequently encountered suboptimal outcomes we introduce the codon-specific elongation model (COSEM) as an alternative concept. COSEM simulates ribosome dynamics during mRNA translation and informs about protein synthesis rates per mRNA in an organism- and context-dependent way. Protein synthesis rates from COSEM are integrated with further relevant covariates such as translation accuracy into a protein expression score that we use for codon optimization. The scoring algorithm further enables fine-tuning of protein expression including deoptimization and is implemented in the software OCTOPOS. The protein expression score produces competitive predictions on proteomic data from prokaryotic, eukaryotic, and human expression systems. In addition, we optimized and tested heterologous expression of manA and ova genes in Salmonella enterica serovar Typhimurium. Superiority over standard methodology was demonstrated by a threefold increase in protein yield compared to wildtype and commercially optimized sequences.
Collapse
|
8
|
Dao Duc K, Saleem ZH, Song YS. Theoretical analysis of the distribution of isolated particles in totally asymmetric exclusion processes: Application to mRNA translation rate estimation. Phys Rev E 2018; 97:012106. [PMID: 29448386 DOI: 10.1103/physreve.97.012106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 11/07/2022]
Abstract
The Totally Asymmetric Exclusion Process (TASEP) is a classical stochastic model for describing the transport of interacting particles, such as ribosomes moving along the messenger ribonucleic acid (mRNA) during translation. Although this model has been widely studied in the past, the extent of collision between particles and the average distance between a particle to its nearest neighbor have not been quantified explicitly. We provide here a theoretical analysis of such quantities via the distribution of isolated particles. In the classical form of the model in which each particle occupies only a single site, we obtain an exact analytic solution using the matrix ansatz. We then employ a refined mean-field approach to extend the analysis to a generalized TASEP with particles of an arbitrary size. Our theoretical study has direct applications in mRNA translation and the interpretation of experimental ribosome profiling data. In particular, our analysis of data from Saccharomyces cerevisiae suggests a potential bias against the detection of nearby ribosomes with a gap distance of less than approximately three codons, which leads to some ambiguity in estimating the initiation rate and protein production flux for a substantial fraction of genes. Despite such ambiguity, however, we demonstrate theoretically that the interference rate associated with collisions can be robustly estimated and show that approximately 1% of the translating ribosomes get obstructed.
Collapse
Affiliation(s)
- Khanh Dao Duc
- Computer Science Division, University of California, Berkeley, California 94720, USA
| | - Zain H Saleem
- Department of Mathematics, University of Pennsylvania, Pennsylvania 19104, USA
| | - Yun S Song
- Computer Science Division and Department of Statistics, University of California, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Patra S, Chowdhury D. Multispecies exclusion process with fusion and fission of rods: A model inspired by intraflagellar transport. Phys Rev E 2018; 97:012138. [PMID: 29448410 DOI: 10.1103/physreve.97.012138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 11/07/2022]
Abstract
We introduce a multispecies exclusion model where length-conserving probabilistic fusion and fission of the hard rods are allowed. Although all rods enter the system with the same initial length ℓ=1, their length can keep changing, because of fusion and fission, as they move in a step-by-step manner towards the exit. Two neighboring hard rods of lengths ℓ_{1} and ℓ_{2} can fuse into a single rod of longer length ℓ=ℓ_{1}+ℓ_{2} provided ℓ≤N. Similarly, length-conserving fission of a rod of length ℓ^{'}≤N results in two shorter daughter rods. Based on the extremum current hypothesis, we plot the phase diagram of the model under open boundary conditions utilizing the results derived for the same model under periodic boundary condition using mean-field approximation. The density profile and the flux profile of rods are in excellent agreement with computer simulations. Although the fusion and fission of the rods are motivated by similar phenomena observed in intraflagellar transport (IFT) in eukaryotic flagella, this exclusion model is too simple to account for the quantitative experimental data for any specific organism. Nevertheless, the concepts of "flux profile" and "transition zone" that emerge from the interplay of fusion and fission in this model are likely to have important implications for IFT and for other similar transport phenomena in long cell protrusions.
Collapse
Affiliation(s)
- Swayamshree Patra
- Department of Physics, Indian Institute of Technology Kanpur, 208016, India
| | | |
Collapse
|
10
|
Zarai Y, Margaliot M, Tuller T. Ribosome flow model with extended objects. J R Soc Interface 2017; 14:rsif.2017.0128. [PMID: 29021157 DOI: 10.1098/rsif.2017.0128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023] Open
Abstract
We study a deterministic mechanistic model for the flow of ribosomes along the mRNA molecule, called the ribosome flow model with extended objects (RFMEO). This model encapsulates many realistic features of translation including non-homogeneous transition rates along mRNA, the fact that every ribosome covers several codons, and the fact that ribosomes cannot overtake one another. The RFMEO is a mean-field approximation of an important model from statistical mechanics called the totally asymmetric simple exclusion process with extended objects (TASEPEO). We demonstrate that the RFMEO describes biophysical aspects of translation better than previous mean-field approximations, and that its predictions correlate well with those of TASEPEO. However, unlike TASEPEO, the RFMEO is amenable to rigorous analysis using tools from systems and control theory. We show that the ribosome density profile along the mRNA in the RFMEO converges to a unique steady-state density that depends on the length of the mRNA, the transition rates along it, and the number of codons covered by every ribosome, but not on the initial density of ribosomes along the mRNA. In particular, the protein production rate also converges to a unique steady state. Furthermore, if the transition rates along the mRNA are periodic with a common period T then the ribosome density along the mRNA and the protein production rate converge to a unique periodic pattern with period T, that is, the model entrains to periodic excitations in the transition rates. Analysis and simulations of the RFMEO demonstrate several counterintuitive results. For example, increasing the ribosome footprint may sometimes lead to an increase in the production rate. Also, for large values of the footprint the steady-state density along the mRNA may be quite complex (e.g. with quasi-periodic patterns) even for relatively simple (and non-periodic) transition rates along the mRNA. This implies that inferring the transition rates from the ribosome density may be non-trivial. We believe that the RFMEO could be useful for modelling, understanding and re-engineering translation as well as other important biological processes.
Collapse
Affiliation(s)
- Yoram Zarai
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Michael Margaliot
- Department of Electrical Engineering Systems, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Mishra B, Chowdhury D. Interference of two codirectional exclusion processes in the presence of a static bottleneck: A biologically motivated model. Phys Rev E 2017; 95:062117. [PMID: 28709297 DOI: 10.1103/physreve.95.062117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Indexed: 12/15/2022]
Abstract
We develop a two-species exclusion process with a distinct pair of entry and exit sites for each species of rigid rods. The relatively slower forward stepping of the rods in an extended bottleneck region, located in between the two entry sites, controls the extent of interference of the codirectional flow of the two species of rods. The relative positions of the sites of entry of the two species of rods with respect to the location of the bottleneck are motivated by a biological phenomenon. However, the primary focus of the study here is to explore the effects of the interference of the flow of the two species of rods on their spatiotemporal organization and the regulations of this interference by the extended bottleneck. By a combination of mean-field theory and computer simulation, we calculate the flux of both species of rods and their density profiles as well as the composite phase diagrams of the system. If the bottleneck is sufficiently stringent, then some of the phases become practically unrealizable, although not ruled out on the basis of any fundamental physical principle. Moreover, the extent of suppression of flow of the downstream entrants by the flow of the upstream entrants can also be regulated by the strength of the bottleneck. We speculate on the possible implications of the results in the context of the biological phenomenon that motivated the formulation of the theoretical model.
Collapse
Affiliation(s)
- Bhavya Mishra
- Department of Physics, Indian Institute of Technology Kanpur, 208016, India
| | | |
Collapse
|
12
|
Bonnin P, Kern N, Young NT, Stansfield I, Romano MC. Novel mRNA-specific effects of ribosome drop-off on translation rate and polysome profile. PLoS Comput Biol 2017; 13:e1005555. [PMID: 28558053 PMCID: PMC5469512 DOI: 10.1371/journal.pcbi.1005555] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 06/13/2017] [Accepted: 05/08/2017] [Indexed: 11/19/2022] Open
Abstract
The well established phenomenon of ribosome drop-off plays crucial roles in translational accuracy and nutrient starvation responses during protein translation. When cells are under stress conditions, such as amino acid starvation or aminoacyl-tRNA depletion due to a high level of recombinant protein expression, ribosome drop-off can substantially affect the efficiency of protein expression. Here we introduce a mathematical model that describes the effects of ribosome drop-off on the ribosome density along the mRNA and on the concomitant protein synthesis rate. Our results show that ribosome premature termination may lead to non-intuitive ribosome density profiles, such as a ribosome density which increases from the 5' to the 3' end. Importantly, the model predicts that the effects of ribosome drop-off on the translation rate are mRNA-specific, and we quantify their resilience to drop-off, showing that the mRNAs which present ribosome queues are much less affected by ribosome drop-off than those which do not. Moreover, among those mRNAs that do not present ribosome queues, resilience to drop-off correlates positively with the elongation rate, so that sequences using fast codons are expected to be less affected by ribosome drop-off. This result is consistent with a genome-wide analysis of S. cerevisiae, which reveals that under favourable growth conditions mRNAs coding for proteins involved in the translation machinery, known to be highly codon biased and using preferentially fast codons, are highly resilient to ribosome drop-off. Moreover, in physiological conditions, the translation rate of mRNAs coding for regulatory, stress-related proteins, is less resilient to ribosome drop-off. This model therefore allows analysis of variations in the translational efficiency of individual mRNAs by accounting for the full range of known ribosome behaviours, as well as explaining mRNA-specific variations in ribosome density emerging from ribosome profiling studies.
Collapse
Affiliation(s)
- Pierre Bonnin
- Institute for Complex Systems and Mathematical Biology, Physics Department, University of Aberdeen, Aberdeen, UK
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Norbert Kern
- Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, Montpellier, France
| | - Neil T. Young
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Ian Stansfield
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - M. Carmen Romano
- Institute for Complex Systems and Mathematical Biology, Physics Department, University of Aberdeen, Aberdeen, UK
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
13
|
Arita C, Foulaadvand ME, Santen L. Signal optimization in urban transport: A totally asymmetric simple exclusion process with traffic lights. Phys Rev E 2017; 95:032108. [PMID: 28415173 DOI: 10.1103/physreve.95.032108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 11/07/2022]
Abstract
We consider the exclusion process on a ring with time-dependent defective bonds at which the hopping rate periodically switches between zero and one. This system models main roads in city traffics, intersecting with perpendicular streets. We explore basic properties of the system, in particular dependence of the vehicular flow on the parameters of signalization as well as the system size and the car density. We investigate various types of the spatial distribution of the vehicular density, and show existence of a shock profile. We also measure waiting time behind traffic lights, and examine its relationship with the traffic flow.
Collapse
Affiliation(s)
- Chikashi Arita
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - M Ebrahim Foulaadvand
- Department of Physics, University of Zanjan, P. O. Box 45196-313, Zanjan, Iran.,School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran
| | - Ludger Santen
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| |
Collapse
|
14
|
Zarai Y, Margaliot M, Tuller T. Optimal Down Regulation of mRNA Translation. Sci Rep 2017; 7:41243. [PMID: 28120903 PMCID: PMC5264618 DOI: 10.1038/srep41243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/19/2016] [Indexed: 01/02/2023] Open
Abstract
Down regulation of mRNA translation is an important problem in various bio-medical domains ranging from developing effective medicines for tumors and for viral diseases to developing attenuated virus strains that can be used for vaccination. Here, we study the problem of down regulation of mRNA translation using a mathematical model called the ribosome flow model (RFM). In the RFM, the mRNA molecule is modeled as a chain of n sites. The flow of ribosomes between consecutive sites is regulated by n + 1 transition rates. Given a set of feasible transition rates, that models the outcome of all possible mutations, we consider the problem of maximally down regulating protein production by altering the rates within this set of feasible rates. Under certain conditions on the feasible set, we show that an optimal solution can be determined efficiently. We also rigorously analyze two special cases of the down regulation optimization problem. Our results suggest that one must focus on the position along the mRNA molecule where the transition rate has the strongest effect on the protein production rate. However, this rate is not necessarily the slowest transition rate along the mRNA molecule. We discuss some of the biological implications of these results.
Collapse
Affiliation(s)
- Yoram Zarai
- School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Michael Margaliot
- School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Tamir Tuller
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel.,Dept. of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
15
|
Zur H, Tuller T. Predictive biophysical modeling and understanding of the dynamics of mRNA translation and its evolution. Nucleic Acids Res 2016; 44:9031-9049. [PMID: 27591251 PMCID: PMC5100582 DOI: 10.1093/nar/gkw764] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022] Open
Abstract
mRNA translation is the fundamental process of decoding the information encoded in mRNA molecules by the ribosome for the synthesis of proteins. The centrality of this process in various biomedical disciplines such as cell biology, evolution and biotechnology, encouraged the development of dozens of mathematical and computational models of translation in recent years. These models aimed at capturing various biophysical aspects of the process. The objective of this review is to survey these models, focusing on those based and/or validated on real large-scale genomic data. We consider aspects such as the complexity of the models, the biophysical aspects they regard and the predictions they may provide. Furthermore, we survey the central systems biology discoveries reported on their basis. This review demonstrates the fundamental advantages of employing computational biophysical translation models in general, and discusses the relative advantages of the different approaches and the challenges in the field.
Collapse
Affiliation(s)
- Hadas Zur
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv 69978, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
16
|
Hao QY, Chen Z, Sun XY, Liu BB, Wu CY. Theoretical analysis and simulation for a facilitated asymmetric exclusion process. Phys Rev E 2016; 94:022113. [PMID: 27627252 DOI: 10.1103/physreve.94.022113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 06/06/2023]
Abstract
Driven diffusive systems are important models in nonequilibrium state statistical mechanics. This paper studies an asymmetric exclusion process model with nearest rear neighbor interactions associated with energy. The exact flux expression of the model is obtained by a cluster mean-field method. Based on the flux expression, the properties of the fundamental diagram have been investigated in detail. To probe the energy's influence on the coarsening process of the system, Monte Carlo simulations are carried out to acquire the monotonic phase boundary in energy-density space. Above the phase boundary, the system is inhomogeneous and the normalized residence distribution p(s) is nonmonotonically decreasing. Under the phase boundary, the system is homogeneous and p(s) is monotonically decreasing. Further study comparatively shows that the system has turned into a microscopic inhomogeneous state from a homogeneous state before the system current arrives at maximum, if nearest rear neighbor interactions are strong. Our findings offer insights to deeply understand the dynamic features of nonequilibrium state systems.
Collapse
Affiliation(s)
- Qing-Yi Hao
- School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, China
| | - Zhe Chen
- School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, China
| | - Xiao-Yan Sun
- College of Physics and Electronic Engineering, Guangxi Teachers Education University, Nanning 530023, China
| | - Bing-Bing Liu
- School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, China
- School of Management, University of Science and Technology of China, Hefei 230026, China
| | - Chao-Yun Wu
- School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, China
- School of Engineering Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Chatterjee AK, Daga B, Mohanty PK. Phase coexistence and spatial correlations in reconstituting k-mer models. Phys Rev E 2016; 94:012121. [PMID: 27575091 DOI: 10.1103/physreve.94.012121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 06/06/2023]
Abstract
In reconstituting k-mer models, extended objects that occupy several sites on a one-dimensional lattice undergo directed or undirected diffusion, and reconstitute-when in contact-by transferring a single monomer unit from one k-mer to the other; the rates depend on the size of participating k-mers. This polydispersed system has two conserved quantities, the number of k-mers and the packing fraction. We provide a matrix product method to write the steady state of this model and to calculate the spatial correlation functions analytically. We show that for a constant reconstitution rate, the spatial correlation exhibits damped oscillations in some density regions separated, from other regions with exponential decay, by a disorder surface. In a specific limit, this constant-rate reconstitution model is equivalent to a single dimer model and exhibits a phase coexistence similar to the one observed earlier in totally asymmetric simple exclusion process on a ring with a defect.
Collapse
Affiliation(s)
- Amit Kumar Chatterjee
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics,1/AF Bidhan Nagar, Kolkata 700064, India
| | - Bijoy Daga
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics,1/AF Bidhan Nagar, Kolkata 700064, India
| | - P K Mohanty
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics,1/AF Bidhan Nagar, Kolkata 700064, India
| |
Collapse
|
18
|
Abstract
Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5′ end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies.
Collapse
|
19
|
Cook LJ, Dong JJ, LaFleur A. Interplay between finite resources and a local defect in an asymmetric simple exclusion process. Phys Rev E 2013; 88:042127. [PMID: 24229136 DOI: 10.1103/physreve.88.042127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/21/2013] [Indexed: 11/07/2022]
Abstract
When particle flux is regulated by multiple factors such as particle supply and varying transport rate, it is important to identify the respective dominant regimes. We extend the well-studied totally asymmetric simple exclusion model to investigate the interplay between a controlled entrance and a local defect site. The model mimics cellular transport phenomena where there is typically a finite particle pool and nonuniform moving rates due to biochemical kinetics. Our simulations reveal regions where, despite an increasing particle supply, the current remains constant while particles redistribute in the system. Exploiting a domain wall approach with mean-field approximation, we provide a theoretical ground for our findings. The results in steady-state current and density profiles provide quantitative insights into the regulation of the transcription and translation process in bacterial protein synthesis.
Collapse
Affiliation(s)
- L Jonathan Cook
- Department of Physics and Engineering, Washington and Lee University, Lexington, Virginia 24450, USA
| | | | | |
Collapse
|
20
|
|
21
|
Dong J, Klumpp S, Zia RKP. Entrainment and unit velocity: surprises in an accelerated exclusion process. PHYSICAL REVIEW LETTERS 2012; 109:130602. [PMID: 23030077 DOI: 10.1103/physrevlett.109.130602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Indexed: 06/01/2023]
Abstract
We introduce a class of distance-dependent interactions in an accelerated exclusion process inspired by the observation of transcribing RNA polymerase speeding up when "pushed" by a trailing one. On a ring, the accelerated exclusion process steady state displays a discontinuous transition, from being homogeneous (with augmented currents) to phase segregated. In the latter state, the holes appear loosely bound and move together, much like a train. Surprisingly, the current-density relation is simply J=1-ρ, signifying that the "hole train" travels with unit velocity.
Collapse
Affiliation(s)
- Jiajia Dong
- Department of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, USA
| | | | | |
Collapse
|
22
|
Brackley CA, Broomhead DS, Romano MC, Thiel M. A max-plus model of ribosome dynamics during mRNA translation. J Theor Biol 2012; 303:128-40. [PMID: 22441134 DOI: 10.1016/j.jtbi.2012.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 02/21/2012] [Accepted: 03/07/2012] [Indexed: 11/16/2022]
Abstract
We examine the dynamics of the translation stage of cellular protein production, in which ribosomes move uni-directionally along an mRNA strand, building amino acid chains as they go. We describe the system using a timed event graph-a class of Petri net useful for studying discrete events, which have to satisfy constraints. We use max-plus algebra to describe a deterministic version of the model, where the constraints represent steric effects which prevent more than one ribosome reading a given codon at a given time and delays associated with the availability of the different tRNAs. We calculate the protein production rate and density of ribosomes on the mRNA and find exact agreement between these analytical results and numerical simulations of the deterministic model, even in the case of heterogeneous mRNAs.
Collapse
Affiliation(s)
- Chris A Brackley
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | | | | | | |
Collapse
|
23
|
Zhu KX, Wang N, Hao QY, Liu QY, Jiang R. Weakening interaction suppresses spontaneous symmetry breaking in two-channel asymmetric exclusion processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041132. [PMID: 22680443 DOI: 10.1103/physreve.85.041132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 03/11/2012] [Indexed: 06/01/2023]
Abstract
This paper has studied spontaneous symmetry breaking (SSB) phenomenon in two types of two-channel asymmetric simple exclusion processes (ASEPs). One common feature of the two systems is that interactions for each species of particle happen at only one site, and the system reduces to two independent ASEPs when interaction vanishes. It is shown that with the weakening of interaction, the SSB is suppressed. More interestingly, the SSB disappears before the interaction is eliminated. Our work thus indicates that local interaction has to be strong enough to produce SSB. The mean-field analysis has been carried out, and the results are consistent with the simulation ones.
Collapse
Affiliation(s)
- Kai-Xuan Zhu
- Key Laboratory of Intelligent Computing and Signal Processing of Education Ministry, Anhui University, Hefei 230039, China
| | | | | | | | | |
Collapse
|
24
|
Shi QH, Jiang R, Hu MB, Wu QS. Phase transitions induced by competition of two driven parts in a periodic system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041131. [PMID: 22680442 DOI: 10.1103/physreve.85.041131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/11/2012] [Indexed: 06/01/2023]
Abstract
This paper studies a periodic driven diffusive system, which separates into two equal-sized parts with different values of hopping rates. Competition of the two different driven parts leads to various bulk-driven phase transitions, including shock and antishock. More interestingly, for the symmetric scenario, one can observe shock and antishock simultaneously in the system. We have explained the coexistence of shock and antishock via the effective boundary reservoir density. Theoretical analysis has been carried out to characterize the emerging nonequilibrium steady states, which is in good agreement with Monte Carlo simulations.
Collapse
Affiliation(s)
- Qi-Hong Shi
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | | | | | | |
Collapse
|
25
|
Grynberg MD. Simulations of driven and reconstituting lattice gases. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:061145. [PMID: 22304078 DOI: 10.1103/physreve.84.061145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 05/31/2023]
Abstract
We discuss stationary aspects of a set of driven lattice gases in which hard-core particles with spatial extent, covering more than one lattice site, diffuse and reconstruct in one dimension under nearest-neighbor interactions. As in the uncoupled case [M. Barma et al., J. Phys.: Condens. Matter 19, 065112 (2007)], the dynamics of the phase space breaks up into an exponentially large number of mutually disconnected sectors labeled by a nonlocal construct, the irreducible string. Depending on whether the particle couplings are taken attractive or repulsive, simulations in most of the studied sectors show that both steady state currents and pair correlations behave quite differently at low temperature regimes. For repulsive interactions an order-by-disorder transition is suggested.
Collapse
Affiliation(s)
- M D Grynberg
- Departamento de Física, Universidad Nacional de La Plata, 1900 La Plata, Argentina
| |
Collapse
|
26
|
Brackley CA, Romano MC, Thiel M. The dynamics of supply and demand in mRNA translation. PLoS Comput Biol 2011; 7:e1002203. [PMID: 22022250 PMCID: PMC3192816 DOI: 10.1371/journal.pcbi.1002203] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 08/04/2011] [Indexed: 11/30/2022] Open
Abstract
We study the elongation stage of mRNA translation in eukaryotes and find that, in contrast to the assumptions of previous models, both the supply and the demand for tRNA resources are important for determining elongation rates. We find that increasing the initiation rate of translation can lead to the depletion of some species of aa-tRNA, which in turn can lead to slow codons and queueing. Particularly striking “competition” effects are observed in simulations of multiple species of mRNA which are reliant on the same pool of tRNA resources. These simulations are based on a recent model of elongation which we use to study the translation of mRNA sequences from the Saccharomyces cerevisiae genome. This model includes the dynamics of the use and recharging of amino acid tRNA complexes, and we show via Monte Carlo simulation that this has a dramatic effect on the protein production behaviour of the system. In this paper we show that the rate at which proteins are produced can be controlled at the elongation stage of mRNA translation. Regulation of translation initiation has been a focus of much study, but the subsequent effect of changes in the initiation rate on the overall translation rate, and the role of slow and fast codon usage in mRNA sequences is still not fully understood. We consider a model of elongation in which the dynamics of tRNA use and recharging are considered for real mRNA sequences. We find that the balance between the demand for, and supply of tRNAs is crucial in determining translation rates. Particularly interesting “competition” effects are observed when the simultaneous translation of multiple mRNA is considered. We show indeed that, via the choice of slow or fast codons, it is in principle possible to control how variation of the supply and demand for tRNA resources changes the rate of protein production from different mRNAs.
Collapse
Affiliation(s)
- Chris A Brackley
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom.
| | | | | |
Collapse
|
27
|
Gupta S, Barma M, Basu U, Mohanty PK. Driven k-mers: correlations in space and time. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041102. [PMID: 22181082 DOI: 10.1103/physreve.84.041102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/14/2011] [Indexed: 05/31/2023]
Abstract
Steady-state properties of hard objects with exclusion interaction and a driven motion along a one-dimensional periodic lattice are investigated. The process is a generalization of the asymmetric simple exclusion process (ASEP) to particles of length k, and is called the k-ASEP. Here, we analyze both static and dynamic properties of the k-ASEP. Density correlations are found to display interesting features, such as pronounced oscillations in both space and time, as a consequence of the extended length of the particles. At long times, the density autocorrelation decays exponentially in time, except at a special k-dependent density when it decays as a power law. In the limit of large k at a finite density of occupied sites, the appropriately scaled system reduces to a nonequilibrium generalization of the Tonks gas describing the motion of hard rods along a continuous line. This allows us to obtain in a simple way the known two-particle distribution for the Tonks gas. For large but finite k, we also obtain the leading-order correction to the Tonks result.
Collapse
Affiliation(s)
- Shamik Gupta
- Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | | | | | | |
Collapse
|
28
|
Liu M, Tuo X, Wang R, Jiang R. Recent developments in totally asymmetric simple exclusion processes with local inhomogeneity. CHINESE SCIENCE BULLETIN-CHINESE 2011. [DOI: 10.1007/s11434-011-4449-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Sharma AK, Chowdhury D. Distribution of dwell times of a ribosome: effects of infidelity, kinetic proofreading and ribosome crowding. Phys Biol 2011; 8:026005. [PMID: 21263169 DOI: 10.1088/1478-3975/8/2/026005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ribosome is a molecular machine that polymerizes a protein where the sequence of the amino acid residues, the monomers of the protein, is dictated by the sequence of codons (triplets of nucleotides) on a messenger RNA (mRNA) that serves as the template. The ribosome is a molecular motor that utilizes the template mRNA strand also as the track. Thus, in each step the ribosome moves forward by one codon and, simultaneously, elongates the protein by one amino acid. We present a theoretical model that captures most of the main steps in the mechanochemical cycle of a ribosome. The stochastic movement of the ribosome consists of an alternating sequence of pause and translocation; the sum of the durations of a pause and the following translocation is the time of dwell of the ribosome at the corresponding codon. We derive the analytical expression for the distribution of the dwell times of a ribosome in our model. Wherever experimental data are available, our theoretical predictions are consistent with those results. We suggest appropriate experiments to test the new predictions of our model, particularly the effects of the quality control mechanism of the ribosome and that of their crowding on the mRNA track.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | |
Collapse
|
30
|
Brackley CA, Romano MC, Thiel M. Slow sites in an exclusion process with limited resources. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:051920. [PMID: 21230513 DOI: 10.1103/physreve.82.051920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/23/2010] [Indexed: 05/30/2023]
Abstract
We introduce slow bottleneck sites into a recent extension of the totally asymmetric exclusion process where hopping rates are allowed to vary dynamically with the availability of resources. In the context of messenger RNA (mRNA) translation in biology, this refers to the availability of amino acid-transfer-RNA (aa-tRNA) complexes which act as the source of amino acids for protein production. We study a simple designer mRNA with a single defect codon in the center. As well as the familiar queuing behavior we also observe a regime within the queuing phase where the queue becomes less severe as the aa-tRNAs become depleted.
Collapse
Affiliation(s)
- Chris A Brackley
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | | | | |
Collapse
|
31
|
Brackley CA, Romano MC, Grebogi C, Thiel M. Limited resources in a driven diffusion process. PHYSICAL REVIEW LETTERS 2010; 105:078102. [PMID: 20868078 PMCID: PMC3638715 DOI: 10.1103/physrevlett.105.078102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Indexed: 05/29/2023]
Abstract
The advance of particles in many driven diffusion systems depends on the availability of resources in the surrounding environment. In the balance between supply and demand of such resources we are confronted with a regime in which, under limited resource availability, the flow is markedly reduced. In the context of mRNA translation this represents the finite availability of amino acid-tRNA molecules. In this limited resources regime a severe depletion of amino acid tRNAs is also observed. These dramatic effects are vital to our understanding of translation, and are likely to also be important for the many other applications of driven diffusion models.
Collapse
Affiliation(s)
- Chris A Brackley
- Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom
| | | | | | | |
Collapse
|
32
|
Hao QY, Jiang R, Hu MB, Wu QS. Mean-field analysis for parallel asymmetric exclusion process with anticipation effect. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:022103. [PMID: 20866859 DOI: 10.1103/physreve.82.022103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Indexed: 05/29/2023]
Abstract
This paper studies an extended parallel asymmetric exclusion process, in which the anticipation effect is taken into account. The fundamental diagram of the model has been investigated via cluster mean field analysis. Different from previous mean field analysis, in which the n -cluster probabilities P(σ{i},…,σ{i+n-1}) involve the (n+2) -cluster probabilities P(τ{i-1},…,τ{i+n}) , our mean-field analysis is asymmetric because the three-cluster probabilities P(σ{i},σ{i+1},σ{i+2}) involve the six-cluster probabilities P(τ{i-1},…,τ{i+4}) . We find an excellent agreement between Monte Carlo simulations and cluster mean field analysis, which indicates that the mean field analysis might give the exact expression.
Collapse
Affiliation(s)
- Qing-Yi Hao
- University of Science and Technology of China, Hefei, China
| | | | | | | |
Collapse
|
33
|
Ciandrini L, Stansfield I, Romano MC. Role of the particle's stepping cycle in an asymmetric exclusion process: a model of mRNA translation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:051904. [PMID: 20866258 PMCID: PMC3639468 DOI: 10.1103/physreve.81.051904] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Indexed: 05/29/2023]
Abstract
Messenger RNA translation is often studied by means of statistical-mechanical models based on the asymmetric simple exclusion process (ASEP), which considers hopping particles (the ribosomes) on a lattice (the polynucleotide chain). In this work we extend this class of models and consider the two fundamental steps of the ribosome's biochemical cycle following a coarse-grained perspective. In order to achieve a better understanding of the underlying biological processes and compare the theoretical predictions with experimental results, we provide a description lying between the minimal ASEP-like models and the more detailed models, which are analytically hard to treat. We use a mean-field approach to study the dynamics of particles associated with an internal stepping cycle. In this framework it is possible to characterize analytically different phases of the system (high density, low density or maximal current phase). Crucially, we show that the transitions between these different phases occur at different parameter values than the equivalent transitions in a standard ASEP, indicating the importance of including the two fundamental steps of the ribosome's biochemical cycle into the model.
Collapse
Affiliation(s)
- L Ciandrini
- Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, AB24 3UE Aberdeen, United Kingdom.
| | | | | |
Collapse
|
34
|
Dorosz S, Mukherjee S, Platini T. Dynamical phase transition of a one-dimensional transport process including death. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:042101. [PMID: 20481772 DOI: 10.1103/physreve.81.042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/22/2010] [Indexed: 05/29/2023]
Abstract
Motivated by biological aspects related to fungus growth, we consider the competition of growth and corrosion. We study a modification of the totally asymmetric exclusion process, including the probabilities of injection alpha and death of the last particle delta . The system presents a phase transition at deltac(alpha), where the average position of the last particle L grows as sqrt[t]. For delta>deltac, a nonequilibrium stationary state exists while for delta<deltac the asymptotic state presents a low density and max current phases. We discuss the scaling of the density and current profiles for parallel and sequential updates.
Collapse
Affiliation(s)
- S Dorosz
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
35
|
Cook LJ, Zia RKP, Schmittmann B. Competition between multiple totally asymmetric simple exclusion processes for a finite pool of resources. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:031142. [PMID: 19905097 DOI: 10.1103/physreve.80.031142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Indexed: 05/28/2023]
Abstract
Using Monte Carlo simulations and a domain-wall theory, we discuss the effect of coupling several totally asymmetric simple exclusion processes (TASEPs) to a finite reservoir of particles. This simple model mimics directed biological transport processes in the presence of finite resources such as protein synthesis limited by a finite pool of ribosomes. If all TASEPs have equal length, we find behavior which is analogous to a single TASEP coupled to a finite pool. For the more generic case of chains with different lengths, several unanticipated regimes emerge. A generalized domain-wall theory captures our findings in good agreement with simulation results.
Collapse
Affiliation(s)
- L Jonathan Cook
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | | | |
Collapse
|
36
|
Garai A, Chowdhury D, Chowdhury D, Ramakrishnan TV. Stochastic kinetics of ribosomes: single motor properties and collective behavior. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011908. [PMID: 19658730 DOI: 10.1103/physreve.80.011908] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/04/2009] [Indexed: 05/28/2023]
Abstract
Syntheses of protein molecules in a cell are carried out by ribosomes. A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an exact analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a "Michaelis-Menten-type" equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechanochemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes simultaneously move on the same mRNA track, while each synthesizes a copy of the same protein. We extend the model of a single ribosome by incorporating steric exclusion of different individuals on the same track. We draw the phase diagram of this model of ribosome traffic in three-dimensional spaces spanned by experimentally controllable parameters. We suggest new experimental tests of our theoretical predictions.
Collapse
Affiliation(s)
- Ashok Garai
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | | | | | |
Collapse
|
37
|
Romano MC, Thiel M, Stansfield I, Grebogi C. Queueing phase transition: theory of translation. PHYSICAL REVIEW LETTERS 2009; 102:198104. [PMID: 19519001 PMCID: PMC3639427 DOI: 10.1103/physrevlett.102.198104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Indexed: 05/27/2023]
Abstract
We study the current of particles on a lattice, where to each site a different hopping probability has been associated and the particles can move only in one direction. We show that the queueing of the particles behind a slow site can lead to a first-order phase transition, and derive analytical expressions for the configuration of slow sites for this to happen. We apply this stochastic model to describe the translation of mRNAs. We show that the first-order phase transition, uncovered in this work, is the process responsible for the classification of the proteins having different biological functions.
Collapse
Affiliation(s)
- M Carmen Romano
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom
| | | | | | | |
Collapse
|
38
|
Foulaadvand ME, Kolomeisky AB, Teymouri H. Asymmetric exclusion processes with disorder: effect of correlations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:061116. [PMID: 19256811 DOI: 10.1103/physreve.78.061116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/16/2008] [Indexed: 05/27/2023]
Abstract
Multiparticle dynamics in one-dimensional asymmetric exclusion processes with disorder is investigated theoretically by computational and analytical methods. It is argued that the general phase diagram consists of three nonequilibrium phases that are determined by the dynamic behavior at the entrance, at the exit and at the slowest defect bond in the bulk of the system. Specifically, we consider dynamics of asymmetric exclusion process with two identical defect bonds as a function of distance between them. Two approximate theoretical methods that treat the system as a sequence of segments with exact description of dynamics inside the segments and neglect correlations between them, are presented. In addition, a numerical iterative procedure for calculating dynamic properties of asymmetric exclusion systems is developed. Our theoretical predictions are compared with extensive Monte Carlo computer simulations. It is shown that correlations play an important role in the particle dynamics. When two defect bonds are far away from each other the strongest correlations are found at these bonds. However, bringing defect bonds closer leads to the shift of correlations to the region between them. Our analysis indicates that it is possible to develop a successful theoretical description of asymmetric exclusion processes with disorder by properly taking into account the correlations.
Collapse
|