1
|
Seemann O, Wan Y, Tata S, Kroupp E, Malka V. Laser Proton Acceleration from a Near-Critical Imploding Gas Target. PHYSICAL REVIEW LETTERS 2024; 133:025001. [PMID: 39073973 DOI: 10.1103/physrevlett.133.025001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/24/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024]
Abstract
The interaction between relativistic intense laser pulses and near-critical-density targets has been sought after in order to increase the efficiency of laser-plasma energy coupling, particularly for laser-driven proton acceleration. To achieve the density regime for high-repetition-rate applications, one elusive approach is to use gas targets, provided that stringent target density profile requirements are met. These include reaching the critical plasma density while maintaining micron-scale density gradients. In this Letter, we present a novel scheme for achieving the necessary requirements using optical laser pulses to transversely shape the target and create a colliding shock wave in both planar and cylindrical geometries. Utilizing this approach, we experimentally demonstrated stable proton acceleration and achieved up to 5 MeV in a monoenergetic distribution and particle numbers above 10^{8} Sr^{-1} MeV^{-1} using a 1.5 J energy on-target laser pulse. The Letter also reports for the first time an extend series of 200 consecutive shots that demonstrates the robustness of the approach and its maturity for applications. These results open the door for future work in controlling gas targets and optimizing the acceleration process for more energetic multipetawatt laser systems.
Collapse
|
2
|
Tazes I, Passalidis S, Kaselouris E, Mancelli D, Karvounis C, Skoulakis A, Fitilis I, Bakarezos M, Papadogiannis NA, Dimitriou V, Tatarakis M. Efficient Magnetic Vortex Acceleration by femtosecond laser interaction with long living optically shaped gas targets in the near critical density plasma regime. Sci Rep 2024; 14:4945. [PMID: 38418538 PMCID: PMC10901874 DOI: 10.1038/s41598-024-54475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
We introduce a novel, gaseous target optical shaping laser set-up, capable to generate short scale length, near-critical target profiles via generated colliding blast waves. These profiles are capable to maintain their compressed density for several nanoseconds, being therefore ideal for laser-plasma particle acceleration experiments in the near critical density plasma regime. Our proposed method overcomes the laser-target synchronization limitations and delivers energetic protons, during the temporal evolution of the optically shaped profile, in a time window of approximately 2.5 ns. The optical shaping of the gas-jet profiles is optimised by MagnetoHydroDynamic simulations. 3D Particle-In-Cell models, adopting the spatiotemporal profile, simulate the 45 TW femtosecond laser plasma interaction to demonstrate the feasibility of the proposed proton acceleration set-up. The optical shaping of gas-jets is performed by multiple, nanosecond laser pulse generated blastwaves. This process results in steep gradient, short scale length plasma profiles, in the near critical density regime allowing operation at high repetition rates. Notably, the Magnetic Vortex Acceleration mechanism exhibits high efficiency in coupling the laser energy into the plasma in the optically shaped targets, resulting to collimated proton beams of energies up to 14 MeV.
Collapse
Affiliation(s)
- I Tazes
- Institute of Plasma Physics and Lasers-IPPL, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethymno, Greece
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133, Chania, Greece
| | - S Passalidis
- CEA, DAM, DIF, 91297, Arpajon, France
- Université Paris-Saclay, CEA, LMCE, 91680, Bruyères-le-Châtel, France
| | - E Kaselouris
- Institute of Plasma Physics and Lasers-IPPL, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethymno, Greece
- Physical Acoustics and Optoacoustics Laboratory, Department of Music Technology and Acoustics, Hellenic Mediterranean University, 74100, Rethymno, Greece
| | - D Mancelli
- Institute of Plasma Physics and Lasers-IPPL, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethymno, Greece
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133, Chania, Greece
| | - C Karvounis
- Institute of Plasma Physics and Lasers-IPPL, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethymno, Greece
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133, Chania, Greece
| | - A Skoulakis
- Institute of Plasma Physics and Lasers-IPPL, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethymno, Greece
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133, Chania, Greece
| | - I Fitilis
- Institute of Plasma Physics and Lasers-IPPL, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethymno, Greece
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133, Chania, Greece
| | - M Bakarezos
- Institute of Plasma Physics and Lasers-IPPL, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethymno, Greece
- Physical Acoustics and Optoacoustics Laboratory, Department of Music Technology and Acoustics, Hellenic Mediterranean University, 74100, Rethymno, Greece
| | - N A Papadogiannis
- Institute of Plasma Physics and Lasers-IPPL, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethymno, Greece
- Physical Acoustics and Optoacoustics Laboratory, Department of Music Technology and Acoustics, Hellenic Mediterranean University, 74100, Rethymno, Greece
| | - V Dimitriou
- Institute of Plasma Physics and Lasers-IPPL, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethymno, Greece.
- Physical Acoustics and Optoacoustics Laboratory, Department of Music Technology and Acoustics, Hellenic Mediterranean University, 74100, Rethymno, Greece.
| | - M Tatarakis
- Institute of Plasma Physics and Lasers-IPPL, University Research and Innovation Centre, Hellenic Mediterranean University, 74100, Rethymno, Greece.
- Department of Electronic Engineering, Hellenic Mediterranean University, 73133, Chania, Greece.
| |
Collapse
|
3
|
High-flux neutron generation by laser-accelerated ions from single- and double-layer targets. Sci Rep 2022; 12:19767. [DOI: 10.1038/s41598-022-24155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
AbstractContemporary ultraintense, short-pulse laser systems provide extremely compact setups for the production of high-flux neutron beams, such as those required for nondestructive probing of dense matter, research on neutron-induced damage in fusion devices or laboratory astrophysics studies. Here, by coupling particle-in-cell and Monte Carlo numerical simulations, we examine possible strategies to optimise neutron sources from ion-induced nuclear reactions using 1-PW, 20-fs-class laser systems. To improve the ion acceleration, the laser-irradiated targets are chosen to be ultrathin solid foils, either standing alone or preceded by a plasma layer of near-critical density to enhance the laser focusing. We compare the performance of these single- and double-layer targets, and determine their optimum parameters in terms of energy and angular spectra of the accelerated ions. These are then sent into a converter to generate neutrons via nuclear reactions on beryllium and lead nuclei. Overall, we identify configurations that result in neutron yields as high as $$\sim 10^{10}\,{\mathrm{n}}\,{\mathrm{sr}}^{-1}$$
∼
10
10
n
sr
-
1
in $$\sim 1$$
∼
1
-cm-thick converters or instantaneous neutron fluxes above $$10^{23}\,{\mathrm{n}}\,{\mathrm{cm}}^{-2}\,{\mathrm{s}}^{-1}$$
10
23
n
cm
-
2
s
-
1
at the backside of $$\lesssim 100$$
≲
100
-$$\upmu$$
μ
m-thick converters. Considering a realistic repetition rate of one laser shot per minute, the corresponding time-averaged neutron yields are predicted to reach values ($$\gtrsim 10^7\,{\mathrm{n}} \,{\mathrm{sr}}^{-1}\,{\mathrm{s}}^{-1}$$
≳
10
7
n
sr
-
1
s
-
1
) well above the current experimental record, and this even with a mere thin foil as a primary target. A further increase in the time-averaged yield up to above $$10^8\,{\mathrm{sr}}^{-1}\,{\mathrm{s}}^{-1}$$
10
8
sr
-
1
s
-
1
is foreseen using double-layer targets.
Collapse
|
4
|
Fedeli L, Formenti A, Cialfi L, Pazzaglia A, Passoni M. Ultra-intense laser interaction with nanostructured near-critical plasmas. Sci Rep 2018; 8:3834. [PMID: 29497130 PMCID: PMC5832818 DOI: 10.1038/s41598-018-22147-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/06/2018] [Indexed: 11/09/2022] Open
Abstract
Near-critical plasmas irradiated at ultra-high laser intensities (I > 1018W/cm2) allow to improve the performances of laser-driven particle and radiation sources and to explore scenarios of great astrophysical interest. Near-critical plasmas with controlled properties can be obtained with nanostructured low-density materials. By means of 3D Particle-In-Cell simulations, we investigate how realistic nanostructures influence the interaction of an ultra-intense laser with a plasma having a near-critical average electron density. We find that the presence of a nanostructure strongly reduces the effect of pulse polarization and enhances the energy absorbed by the ion population, while generally leading to a significant decrease of the electron temperature with respect to a homogeneous near-critical plasma. We also observe an effect of the nanostructure morphology. These results are relevant both for a fundamental understanding and for the foreseen applications of laser-plasma interaction in the near-critical regime.
Collapse
Affiliation(s)
- Luca Fedeli
- Department of Energy, Politecnico di Milano, Via Ponzio 34/3, Milano, 20133, Italy.
| | - Arianna Formenti
- Department of Energy, Politecnico di Milano, Via Ponzio 34/3, Milano, 20133, Italy
| | - Lorenzo Cialfi
- Department of Energy, Politecnico di Milano, Via Ponzio 34/3, Milano, 20133, Italy
| | - Andrea Pazzaglia
- Department of Energy, Politecnico di Milano, Via Ponzio 34/3, Milano, 20133, Italy
| | - Matteo Passoni
- Department of Energy, Politecnico di Milano, Via Ponzio 34/3, Milano, 20133, Italy
| |
Collapse
|
5
|
Ultrafast evolution of electric fields from high-intensity laser-matter interactions. Sci Rep 2018; 8:3243. [PMID: 29459758 PMCID: PMC5818584 DOI: 10.1038/s41598-018-21711-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/08/2018] [Indexed: 11/09/2022] Open
Abstract
The interaction of high-power ultra-short lasers with materials offers fascinating wealth of transient phenomena which are in the core of novel scientific research. Deciphering its evolution is a complicated task that strongly depends on the details of the early phase of the interaction, which acts as complex initial conditions. The entire process, moreover, is difficult to probe since it develops close to target on the sub-picosecond timescale and ends after some picoseconds. Here we present experimental results related to the fields and charges generated by the interaction of an ultra-short high-intensity laser with metallic targets. The temporal evolution of the interaction is probed with a novel femtosecond resolution diagnostics that enables the differentiation of the contribution by the high-energy forerunner electrons and the radiated electromagnetic pulses generated by the currents of the remaining charges on the target surface. Our results provide a snapshot of huge pulses, up to 0.6 teravolt per meter, emitted with multi-megaelectronvolt electron bunches with sub-picosecond duration and are able to explore the processes involved in laser-matter interactions at the femtosecond timescale.
Collapse
|
6
|
Enhanced proton acceleration from an ultrathin target irradiated by laser pulses with plateau ASE. Sci Rep 2018; 8:2536. [PMID: 29416117 PMCID: PMC5803217 DOI: 10.1038/s41598-018-20948-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/26/2018] [Indexed: 11/20/2022] Open
Abstract
We report a simulation study on proton acceleration driven by ultraintense laser pulses with normal contrast (107–109) containing nanosecond plateau amplified spontaneous emission (ASE). It’s found in hydrodynamic simulations that if the thickness of the targets lies in the range of hundreds nanometer matching the intensity and duration of ASE, the ablation pressure would push the whole target in the forward direction with speed exceeding the expansion velocity of plasma, resulting in a plasma density profile with a long extension at the target front and a sharp gradient at the target rear. When the main pulse irradiates the plasma, self-focusing happens at the target front, producing highly energetic electrons through direct laser acceleration(DLA) building the sheath field. The sharp plasma gradient at target rear ensures a strong sheath field. 2D particle-in-cell(PIC) simulations reveal that the proton energy can be enhanced by a factor of 2 compared to the case of using micrometer-thick targets.
Collapse
|
7
|
Acceleration of collimated 45 MeV protons by collisionless shocks driven in low-density, large-scale gradient plasmas by a 10 20 W/cm 2, 1 µm laser. Sci Rep 2017; 7:16463. [PMID: 29184108 PMCID: PMC5705667 DOI: 10.1038/s41598-017-15449-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 10/24/2017] [Indexed: 11/08/2022] Open
Abstract
A new type of proton acceleration stemming from large-scale gradients, low-density targets, irradiated by an intense near-infrared laser is observed. The produced protons are characterized by high-energies (with a broad spectrum), are emitted in a very directional manner, and the process is associated to relaxed laser (no need for high-contrast) and target (no need for ultra-thin or expensive targets) constraints. As such, this process appears quite effective compared to the standard and commonly used Target Normal Sheath Acceleration technique (TNSA), or more exploratory mechanisms like Radiation Pressure Acceleration (RPA). The data are underpinned by 3D numerical simulations which suggest that in these conditions a Low Density Collisionless Shock Acceleration (LDCSA) mechanism is at play, which combines an initial Collisionless Shock Acceleration (CSA) to a boost procured by a TNSA-like sheath field in the downward density ramp of the target, leading to an overall broad spectrum. Experiments performed at a laser intensity of 1020 W/cm2 show that LDCSA can accelerate, from ~1% critical density, mm-scale targets, up to 5 × 109 protons/MeV/sr/J with energies up to 45(±5) MeV in a collimated (~6° half-angle) manner.
Collapse
|
8
|
Chen SN, Vranic M, Gangolf T, Boella E, Antici P, Bailly-Grandvaux M, Loiseau P, Pépin H, Revet G, Santos JJ, Schroer AM, Starodubtsev M, Willi O, Silva LO, d'Humières E, Fuchs J. Collimated protons accelerated from an overdense gas jet irradiated by a 1 µm wavelength high-intensity short-pulse laser. Sci Rep 2017; 7:13505. [PMID: 29044204 PMCID: PMC5647424 DOI: 10.1038/s41598-017-12910-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/12/2017] [Indexed: 11/29/2022] Open
Abstract
We have investigated proton acceleration in the forward direction from a near-critical density hydrogen gas jet target irradiated by a high intensity (1018 W/cm2), short-pulse (5 ps) laser with wavelength of 1.054 μm. We observed the signature of the Collisionless Shock Acceleration mechanism, namely quasi-monoenergetic proton beams with small divergence in addition to the more commonly observed electron-sheath driven proton acceleration. The proton energies we obtained were modest (~MeV), but prospects for improvement are offered through further tailoring the gas jet density profile. Also, we observed that this mechanism is very robust in producing those beams and thus can be considered as a future candidate in laser-driven ion sources driven by the upcoming next generation of multi-PW near-infrared lasers.
Collapse
Affiliation(s)
- S N Chen
- LULI - CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités, F-91128, Palaiseau cedex, France.
- Institute of Applied Physics, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia.
- Light Stream Labs LLC., Sunnyvale, CA, USA.
| | - M Vranic
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - T Gangolf
- LULI - CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités, F-91128, Palaiseau cedex, France
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - E Boella
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - P Antici
- INRS-EMT, 1650, boulevard Lionel-Boulet, J3X 1S2, Varennes (Québec), Canada
| | - M Bailly-Grandvaux
- Univ. Bordeaux, CNRS, CEA, CELIA (Centre Laser Intenses et Applications), UMR 5107, F-33405, Talence, France
| | - P Loiseau
- CEA, DAM, DIF, F-91297, Arpajon, France
| | - H Pépin
- INRS-EMT, 1650, boulevard Lionel-Boulet, J3X 1S2, Varennes (Québec), Canada
| | - G Revet
- LULI - CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités, F-91128, Palaiseau cedex, France
- Institute of Applied Physics, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia
| | - J J Santos
- Univ. Bordeaux, CNRS, CEA, CELIA (Centre Laser Intenses et Applications), UMR 5107, F-33405, Talence, France
| | - A M Schroer
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Mikhail Starodubtsev
- Institute of Applied Physics, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia
| | - O Willi
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - L O Silva
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - E d'Humières
- Univ. Bordeaux, CNRS, CEA, CELIA (Centre Laser Intenses et Applications), UMR 5107, F-33405, Talence, France
| | - J Fuchs
- LULI - CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités, F-91128, Palaiseau cedex, France
- Institute of Applied Physics, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia
| |
Collapse
|
9
|
Yogo A, Mima K, Iwata N, Tosaki S, Morace A, Arikawa Y, Fujioka S, Johzaki T, Sentoku Y, Nishimura H, Sagisaka A, Matsuo K, Kamitsukasa N, Kojima S, Nagatomo H, Nakai M, Shiraga H, Murakami M, Tokita S, Kawanaka J, Miyanaga N, Yamanoi K, Norimatsu T, Sakagami H, Bulanov SV, Kondo K, Azechi H. Boosting laser-ion acceleration with multi-picosecond pulses. Sci Rep 2017; 7:42451. [PMID: 28211913 PMCID: PMC5304168 DOI: 10.1038/srep42451] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/09/2017] [Indexed: 11/28/2022] Open
Abstract
Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm-2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.
Collapse
Affiliation(s)
- A. Yogo
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - K. Mima
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
- The Graduate School for the Creation of New Photon Industries, Hamamatsu, Shizuoka 431-1202, Japan
| | - N. Iwata
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - S. Tosaki
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - A. Morace
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Y. Arikawa
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - S. Fujioka
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - T. Johzaki
- Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8511, Japan
| | - Y. Sentoku
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - H. Nishimura
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - A. Sagisaka
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa 619-0215, Kyoto, Japan
| | - K. Matsuo
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - N. Kamitsukasa
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - S. Kojima
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - H. Nagatomo
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - M. Nakai
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - H. Shiraga
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - M. Murakami
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - S. Tokita
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - J. Kawanaka
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - N. Miyanaga
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - K. Yamanoi
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - T. Norimatsu
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - H. Sakagami
- National Institute for Fusion Science, Gifu 509-5292, Japan
| | - S. V. Bulanov
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa 619-0215, Kyoto, Japan
| | - K. Kondo
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa 619-0215, Kyoto, Japan
| | - H. Azechi
- Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| |
Collapse
|
10
|
Gu YJ, Klimo O, Kumar D, Liu Y, Singh SK, Esirkepov TZ, Bulanov SV, Weber S, Korn G. Fast magnetic-field annihilation in the relativistic collisionless regime driven by two ultrashort high-intensity laser pulses. Phys Rev E 2016; 93:013203. [PMID: 26871179 DOI: 10.1103/physreve.93.013203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 11/07/2022]
Abstract
The magnetic quadrupole structure formation during the interaction of two ultrashort high power laser pulses with a collisionless plasma is demonstrated with 2.5-dimensional particle-in-cell simulations. The subsequent expansion of the quadrupole is accompanied by magnetic-field annihilation in the ultrarelativistic regime, when the magnetic field cannot be sustained by the plasma current. This results in a dominant contribution of the displacement current exciting a strong large scale electric field. This field leads to the conversion of magnetic energy into kinetic energy of accelerated electrons inside the thin current sheet.
Collapse
Affiliation(s)
- Y J Gu
- Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech Republic
| | - O Klimo
- Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech Republic.,FNSPE, Czech Technical University in Prague, 11519 Prague, Czech Republic
| | - D Kumar
- Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech Republic
| | - Y Liu
- Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech Republic
| | - S K Singh
- Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech Republic
| | - T Zh Esirkepov
- Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| | - S V Bulanov
- Kansai Photon Science Institute, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| | - S Weber
- Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech Republic
| | - G Korn
- Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech Republic
| |
Collapse
|
11
|
Kim YK, Cho MH, Song HS, Kang T, Park HJ, Jung MY, Hur MS. Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:043102. [PMID: 26565351 DOI: 10.1103/physreve.92.043102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 06/05/2023]
Abstract
We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of λ∼1μm.
Collapse
Affiliation(s)
- Young-Kuk Kim
- School of Electrical and Computer Engineering, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 689-798, Korea
| | - Myung-Hoon Cho
- Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712, Korea
| | - Hyung Seon Song
- School of Natural Science, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 689-798, Korea
| | - Teyoun Kang
- School of Natural Science, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 689-798, Korea
| | - Hyung Ju Park
- Biomed Team, Electronics and Telecommunications Research Institute, 218 Gajeongno, Yuseong-gu, Daejeon 305-700, Korea
| | - Moon Youn Jung
- Biomed Team, Electronics and Telecommunications Research Institute, 218 Gajeongno, Yuseong-gu, Daejeon 305-700, Korea
| | - Min Sup Hur
- School of Natural Science, UNIST, 50 UNIST-gil, Ulju-gun, Ulsan, 689-798, Korea
| |
Collapse
|
12
|
Yogo A, Kondo K, Mori M, Kiriyama H, Ogura K, Shimomura T, Inoue N, Fukuda Y, Sakaki H, Jinno S, Kanasaki M, Bolton PR. Insertable pulse cleaning module with a saturable absorber pair and a compensating amplifier for high-intensity ultrashort-pulse lasers. OPTICS EXPRESS 2014; 22:2060-2069. [PMID: 24515215 DOI: 10.1364/oe.22.002060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We demonstrate the performance of an efficient insertable pulse cleaning module (IPCM) that uses a saturable absorber (SA) pair with a compensating multi-pass amplifier. IPCM consists of a first SA, a grating compressor, a second SA, a stretcher and a compensating Ti:sapphire amplifier. It is implemented with a conventional chirped pulse amplification (CPA) Ti:sapphire laser system, resulting in a double CPA system architecture, and suppresses the amplified spontaneous emission (ASE) level of the pulse pedestal by about three orders of magnitude while preserving the output pulse energy and repetition-rate of the overall laser system. The duration of recompressed cleaned pulses is comparable to that obtained without the cleaning module. The effectiveness of the cleaning module is confirmed in laser-driven proton acceleration experiments. At the 10(9) W/cm2 pedestal level, the surface structure and electrical resistivity of an insulator target (100 nm silicon nitride) are preserved prior to the arrival of the intense ultrashort pulse.
Collapse
|
13
|
Wang HY, Lin C, Liu B, Sheng ZM, Lu HY, Ma WJ, Bin JH, Schreiber J, He XT, Chen JE, Zepf M, Yan XQ. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:013107. [PMID: 24580346 DOI: 10.1103/physreve.89.013107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Indexed: 06/03/2023]
Abstract
A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2.
Collapse
Affiliation(s)
- H Y Wang
- State Key Laboratory of Nuclear Physics and Technology, and Key Lab of High Energy Density Physics Simulation, CAPT, Peking University, Beijing 100871, China and Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - C Lin
- State Key Laboratory of Nuclear Physics and Technology, and Key Lab of High Energy Density Physics Simulation, CAPT, Peking University, Beijing 100871, China
| | - B Liu
- State Key Laboratory of Nuclear Physics and Technology, and Key Lab of High Energy Density Physics Simulation, CAPT, Peking University, Beijing 100871, China
| | - Z M Sheng
- Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - H Y Lu
- State Key Laboratory of Nuclear Physics and Technology, and Key Lab of High Energy Density Physics Simulation, CAPT, Peking University, Beijing 100871, China
| | - W J Ma
- Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany and Fakultät für Physik, LMU München, D-85748 Garching, Germany
| | - J H Bin
- Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany and Fakultät für Physik, LMU München, D-85748 Garching, Germany
| | - J Schreiber
- Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany and Fakultät für Physik, LMU München, D-85748 Garching, Germany
| | - X T He
- State Key Laboratory of Nuclear Physics and Technology, and Key Lab of High Energy Density Physics Simulation, CAPT, Peking University, Beijing 100871, China
| | - J E Chen
- State Key Laboratory of Nuclear Physics and Technology, and Key Lab of High Energy Density Physics Simulation, CAPT, Peking University, Beijing 100871, China
| | - M Zepf
- Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - X Q Yan
- State Key Laboratory of Nuclear Physics and Technology, and Key Lab of High Energy Density Physics Simulation, CAPT, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Sylla F, Flacco A, Kahaly S, Veltcheva M, Lifschitz A, Malka V, d'Humières E, Andriyash I, Tikhonchuk V. Short intense laser pulse collapse in near-critical plasma. PHYSICAL REVIEW LETTERS 2013; 110:085001. [PMID: 23473156 DOI: 10.1103/physrevlett.110.085001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Indexed: 06/01/2023]
Abstract
It is observed that the interaction of an intense ultrashort laser pulse with a near-critical gas jet results in the pulse collapse and the deposition of a significant fraction of the energy. This deposition happens in a small and well-localized volume in the rising part of the gas jet, where the electrons are efficiently accelerated and heated. A collisionless plasma expansion over ~ 150 μm at a subrelativistic velocity (~ c/3) has been optically monitored in time and space, and attributed to the quasistatic field ionization of the gas associated with the hot electron current. Numerical simulations in good agreement with the observations suggest the acceleration in the collapse region of relativistic electrons, along with the excitation of a sizable magnetic dipole that sustains the electron current over several picoseconds.
Collapse
Affiliation(s)
- F Sylla
- Laboratoire d'Optique Appliquée, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ogura K, Nishiuchi M, Pirozhkov AS, Tanimoto T, Sagisaka A, Esirkepov TZ, Kando M, Shizuma T, Hayakawa T, Kiriyama H, Shimomura T, Kondo S, Kanazawa S, Nakai Y, Sasao H, Sasao F, Fukuda Y, Sakaki H, Kanasaki M, Yogo A, Bulanov SV, Bolton PR, Kondo K. Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification/Ti:sapphire hybrid laser system. OPTICS LETTERS 2012; 37:2868-2870. [PMID: 22825161 DOI: 10.1364/ol.37.002868] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Using a high-contrast (10(10):1) and high-intensity (10(21) W/cm(2)) laser pulse with the duration of 40 fs from an optical parametric chirped-pulse amplification/Ti:sapphire laser, a 40 MeV proton bunch is obtained, which is a record for laser pulse with energy less than 10 J. The efficiency for generation of protons with kinetic energy above 15 MeV is 0.1%.
Collapse
Affiliation(s)
- Koichi Ogura
- Japan Atomic Energy Agency, Kansai Photon Science Institute, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Daido H, Nishiuchi M, Pirozhkov AS. Review of laser-driven ion sources and their applications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:056401. [PMID: 22790586 DOI: 10.1088/0034-4885/75/5/056401] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of scientific, industrial and medical applications of laser-driven proton or ion sources, some of which have already been established, while the others are yet to be demonstrated. In most applications, the laser-driven ion sources are complementary to the conventional accelerators, exhibiting significantly different properties. Finally, we summarize the paper.
Collapse
Affiliation(s)
- Hiroyuki Daido
- Applied Laser Technology Institute, Tsuruga Head Office, Japan Atomic Energy Agency, Kizaki, Tsuruga-shi, Fukui-ken 914-8585, Japan.
| | | | | |
Collapse
|
17
|
Abstract
Ion beam therapy for cancer has proven to be a successful clinical approach, affording as good a cure as surgery and a higher quality of life. However, the ion beam therapy installation is large and expensive, limiting its availability for public benefit. One of the hurdles is to make the accelerator more compact on the basis of conventional technology. Laser acceleration of ions represents a rapidly developing young field. The prevailing acceleration mechanism (known as target normal sheath acceleration, TNSA), however, shows severe limitations in some key elements. We now witness that a new regime of coherent acceleration of ions by laser (CAIL) has been studied to overcome many of these problems and accelerate protons and carbon ions to high energies with higher efficiencies. Emerging scaling laws indicate possible realization of an ion therapy facility with compact, cost-efficient lasers. Furthermore, dense particle bunches may allow the use of much higher collective fields, reducing the size of beam transport and dump systems. Though ultimate realization of a laser-driven medical facility may take many years, the field is developing fast with many conceptual innovations and technical progress.
Collapse
Affiliation(s)
- Toshiki Tajima
- Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
- Photo-Medical Research Center, JAEA, Kyoto, 619-0215, Japan
| | - Dietrich Habs
- Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
| | - Xueqing Yan
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
- SKL of Nuclear Physics and Technology, Peking University, 100871, Beijing, China
| |
Collapse
|
18
|
Sgattoni A, Londrillo P, Macchi A, Passoni M. Laser ion acceleration using a solid target coupled with a low-density layer. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:036405. [PMID: 22587194 DOI: 10.1103/physreve.85.036405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Indexed: 05/31/2023]
Abstract
We investigate by particle-in-cell simulations in two and three dimensions the laser-plasma interaction and the proton acceleration in multilayer targets where a low-density ("near-critical") layer of a few-micron thickness is added on the illuminated side of a thin, high-density layer. This target design can be obtained by depositing a "foam" layer on a thin metallic foil. The presence of the near-critical plasma strongly increases both the conversion efficiency and the energy of electrons and leads to enhanced acceleration of protons from a rear side layer via the target normal sheath acceleration mechanism. The electrons of the foam are strongly accelerated in the forward direction and propagate on the rear side of the target, building up a high electric field with a relatively flat longitudinal profile. In these conditions the maximum proton energy is up to three times higher than in the case of the bare solid target.
Collapse
Affiliation(s)
- A Sgattoni
- Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, I-20133 Milan, Italy.
| | | | | | | |
Collapse
|
19
|
Wang HY, Lin C, Sheng ZM, Liu B, Zhao S, Guo ZY, Lu YR, He XT, Chen JE, Yan XQ. Laser shaping of a relativistic intense, short Gaussian pulse by a plasma lens. PHYSICAL REVIEW LETTERS 2011; 107:265002. [PMID: 22243161 DOI: 10.1103/physrevlett.107.265002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Indexed: 05/31/2023]
Abstract
By 3D particle-in-cell simulation and analysis, we propose a plasma lens to make high intensity, high contrast laser pulses with a steep front. When an intense, short Gaussian laser pulse of circular polarization propagates in near-critical plasma, it drives strong currents of relativistic electrons which magnetize the plasma. Three pulse shaping effects are synchronously observed when the laser passes through the plasma lens. The laser intensity is increased by more than 1 order of magnitude while the initial Gaussian profile undergoes self-modulation longitudinally and develops a steep front. Meanwhile, a nonrelativistic prepulse can be absorbed by the overcritical plasma lens, which can improve the laser contrast without affecting laser shaping of the main pulse. If the plasma skin length is properly chosen and kept fixed, the plasma lens can be used for varied laser intensity above 10(19) W/cm(2).
Collapse
Affiliation(s)
- H Y Wang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nakamura T, Bulanov SV, Esirkepov TZ, Kando M. High-energy ions from near-critical density plasmas via magnetic vortex acceleration. PHYSICAL REVIEW LETTERS 2010; 105:135002. [PMID: 21230779 DOI: 10.1103/physrevlett.105.135002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Indexed: 05/30/2023]
Abstract
Ultraintense laser pulses propagating in near-critical density plasmas generate magnetic dipole vortex structures. In the region of decreasing plasma density, the vortex expands both in forward and lateral directions. The magnetic field pressure pushes electrons and ions to form a density jump along the vortex axis and induces a longitudinal electric field. This structure moves together with the expanding dipole vortex. The background ions located ahead of the electric field are accelerated to high energies. The energy scaling of ions generated by this magnetic vortex acceleration mechanism is derived and corroborated using particle-in-cell simulations.
Collapse
Affiliation(s)
- Tatsufumi Nakamura
- Advanced Photon Research Center, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215, Japan.
| | | | | | | |
Collapse
|
21
|
d'Humiéres E, Feugeas JL, Nicolaï P, Gaillard S, Cowan T, Sentoku Y, Tikhonchuk V. Investigation of high intensity laser proton acceleration with underdense targets. ACTA ACUST UNITED AC 2010. [DOI: 10.1088/1742-6596/244/4/042023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Bulanov SS, Bychenkov VY, Chvykov V, Kalinchenko G, Litzenberg DW, Matsuoka T, Thomas AGR, Willingale L, Yanovsky V, Krushelnick K, Maksimchuk A. Generation of GeV protons from 1 PW laser interaction with near critical density targets. PHYSICS OF PLASMAS 2010; 17:043105. [PMID: 20838426 PMCID: PMC2931601 DOI: 10.1063/1.3372840] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/05/2010] [Indexed: 05/29/2023]
Abstract
The propagation of ultraintense laser pulses through matter is connected with the generation of strong moving magnetic fields in the propagation channel as well as the formation of a thin ion filament along the axis of the channel. Upon exiting the plasma the magnetic field displaces the electrons at the back of the target, generating a quasistatic electric field that accelerates and collimates ions from the filament. Two dimensional particle-in-cell simulations show that a 1 PW laser pulse tightly focused on a near-critical density target is able to accelerate protons up to an energy of 1.3 GeV. Scaling laws and optimal conditions for proton acceleration are established considering the energy depletion of the laser pulse.
Collapse
|
23
|
Fukuda Y, Faenov AY, Tampo M, Pikuz TA, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov AS, Ogura K, Mori M, Esirkepov TZ, Koga J, Boldarev AS, Gasilov VA, Magunov AI, Yamauchi T, Kodama R, Bolton PR, Kato Y, Tajima T, Daido H, Bulanov SV. Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target. PHYSICAL REVIEW LETTERS 2009; 103:165002. [PMID: 19905702 DOI: 10.1103/physrevlett.103.165002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Indexed: 05/28/2023]
Abstract
An approach for accelerating ions, with the use of a cluster-gas target and an ultrashort pulse laser of 150-mJ energy and 40-fs duration, is presented. Ions with energy 10-20 MeV per nucleon having a small divergence (full angle) of 3.4 degrees are generated in the forward direction, corresponding to approximately tenfold increase in the ion energies compared to previous experiments using solid targets. It is inferred from a particle-in-cell simulation that the high energy ions are generated at the rear side of the target due to the formation of a strong dipole vortex structure in subcritical density plasmas.
Collapse
Affiliation(s)
- Y Fukuda
- Kansai Photon Science Institute and Photo-Medical Research Center, JAEA, Kyoto, 615-0215 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gonoskov AA, Korzhimanov AV, Eremin VI, Kim AV, Sergeev AM. Multicascade proton acceleration by a superintense laser pulse in the regime of relativistically induced slab transparency. PHYSICAL REVIEW LETTERS 2009; 102:184801. [PMID: 19518877 DOI: 10.1103/physrevlett.102.184801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Indexed: 05/27/2023]
Abstract
The regime of multicascade proton acceleration during the interaction of a 10(21)-10(22) W/cm2 laser pulse with a structured target is proposed. The regime is based on the electron charge displacement under the action of laser ponderomotive force and on the effect of relativistically induced slab transparency which allows realization of the idea of multicascade acceleration. It is shown that a target comprising several thin foils properly spaced apart can optimize the acceleration process and give at the output a quasi-monoenergetic beam of protons with energies up to hundreds of MeV with an energy spread of just a few percent.
Collapse
Affiliation(s)
- A A Gonoskov
- Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | | | | | | | | |
Collapse
|